Publications

2 Results
Skip to search filters

Modeling strength and failure variability due to porosity in additively manufactured metals

Computer Methods in Applied Mechanics and Engineering

Khalil, Mohammad K.; Teichert, Gregory H.; Alleman, Coleman A.; Heckman, Nathan H.; Jones, Reese E.; Garikipati, K.; Boyce, B.L.

To model and quantify the variability in plasticity and failure of additively manufactured metals due to imperfections in their microstructure, we have developed uncertainty quantification methodology based on pseudo marginal likelihood and embedded variability techniques. We account for both the porosity resolvable in computed tomography scans of the initial material and the sub-threshold distribution of voids through a physically motivated model. Calibration of the model indicates that the sub-threshold population of defects dominates the yield and failure response. The technique also allows us to quantify the distribution of material parameters connected to microstructural variability created by the manufacturing process, and, thereby, make assessments of material quality and process control.

More Details

Uncertainty Quantification of Microstructural Material Variability Effects

Jones, Reese E.; Boyce, Brad B.; Frankel, Ari L.; Heckman, Nathan H.; Khalil, Mohammad K.; Ostien, Jakob O.; Rizzi, Francesco N.; Tachida, Kousuke K.; Teichert, Gregory H.; Templeton, Jeremy A.

This project has developed models of variability of performance to enable robust design and certification. Material variability originating from microstructure has significant effects on component behavior and creates uncertainty in material response. The outcomes of this project are uncertainty quantification (UQ) enabled analysis of material variability effects on performance and methods to evaluate the consequences of microstructural variability on material response in general. Material variability originating from heterogeneous microstructural features, such as grain and pore morphologies, has significant effects on component behavior and creates uncertainty around performance. Current engineering material models typically do not incorporate microstructural variability explicitly, rather functional forms are chosen based on intuition and parameters are selected to reflect mean behavior. Conversely, mesoscale models that capture the microstructural physics, and inherent variability, are impractical to utilize at the engineering scale. Therefore, current efforts ignore physical characteristics of systems that may be the predominant factors for quantifying system reliability. To address this gap we have developed explicit connections between models of microstructural variability and component/system performance. Our focus on variability of mechanical response due to grain and pore distributions enabled us to fully probe these influences on performance and develop a methodology to propagate input variability to output performance. This project is at the forefront of data-science and material modeling. We adapted and innovated from progressive techniques in machine learning and uncertainty quantification to develop a new, physically-based methodology to address the core issues of the Engineering Materials Reliability (EMR) research challenge in modeling constitutive response of materials with significant inherent variability and length-scales.

More Details
2 Results
2 Results