Publications

112 Results
Skip to search filters

Reduced Silicon Usage in Flat Photo-Voltaic Panels

Sweatt, W.C.; Nielson, Gregory N.; Okandan, Murat O.

Silicon usage in fixed, flat-panel photovoltaic systems can be reduced by 60 to 75% with no efficiency loss through use of arrays of mini-concentrators. These concentrators are simple trough-like reflectors that are formed in flat sheets of ~1- mm thick optical plastic. Concentration ratios of 2.55X can be achieved on rooftops and 4.0X on walls while collecting all of the direct sun and scattered skylight. The concentrators are fabricated in optical plastic— preferably polycarbonate for its high refractive index. The panels are typically 1mm thick so the weight of a panel is ~1kg/m2. In addition to the rooftop, wall and window blind designs, a design is proposed that can be tilted toward the sun position at the equinox. These systems are all designed so they can be mass-produced.

More Details

Cost analysis of flat-plate concentrators employing microscale photovoltaic cells for high energy per unit area applications

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Paap, Scott; Gupta, Vipin P.; Tauke-Pedretti, Anna; Resnick, Paul J.; Sanchez, Carlos A.; Nielson, Gregory N.; Cruz-Campa, Jose L.; Jared, Bradley H.; Nelson, Jeffrey; Okandan, Murat O.; Sweatt, W.C.

Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that can be used to reduce costs, enhance functionality, improve reliability, or some combination of all three. In this article, we introduce analytical tools and techniques to estimate the costs associated with a hybrid concentrating photovoltaic system that uses multi-junction microscale photovoltaic cells and miniaturized concentrating optics for harnessing direct sunlight, and an active c-Si substrate for collecting diffuse sunlight. The overall model comprises components representing costs and profit margin associated with the PV cells, concentrating optics, balance of systems, installation, and operation. This article concludes with an analysis of the component costs with particular emphasis on the microscale PV cell costs and the associated tradeoffs between cost and performance for the hybrid CPV design.

More Details

Defect localization, characterization and reliability assessment in emerging photovoltaic devices

Cruz-Campa, Jose L.; Haase, Gad S.; Cole, Edward I.; Tangyunyong, Paiboon T.; Okandan, Murat O.; Nielson, Gregory N.

Microsystems-enabled photovoltaics (MEPV) can potentially meet increasing demands for light-weight, portable, photovoltaic solutions with high power density and efficiency. The study in this report examines failure analysis techniques to perform defect localization and evaluate MEPV modules. CMOS failure analysis techniques, including electroluminescence, light-induced voltage alteration, thermally-induced voltage alteration, optical beam induced current, and Seabeck effect imaging were successfully adapted to characterize MEPV modules. The relative advantages of each approach are reported. In addition, the effects of exposure to reverse bias and light stress are explored. MEPV was found to have good resistance to both kinds of stressors. The results form a basis for further development of failure analysis techniques for MEPVs of different materials systems or multijunction MEPVs. The incorporation of additional stress factors could be used to develop a reliability model to generate lifetime predictions for MEPVs as well as uncover opportunities for future design improvements.

More Details

Development of MEMS photoacoustic spectroscopy

Eichenfield, Matthew S.; Givler, R.C.; Pfeifer, Kent B.; Reinke, Charles M.; Robinson, Alex L.; Resnick, Paul J.; Griffin, Benjamin G.; Langlois, Eric L.; Nielson, Gregory N.; Okandan, Murat O.

After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.

More Details

Failure analysis techniques for microsystems-enabled photovoltaics

IEEE Journal of Photovoltaics

Yang, Benjamin B.; Cruz-Campa, Jose L.; Haase, Gad S.; Cole, Edward I.; Tangyunyong, Paiboon T.; Resnick, Paul J.; Kilgo, Alice C.; Okandan, Murat O.; Nielson, Gregory N.

Microsystems-enabled photovoltaics (MEPV) has great potential to meet the increasing demands for light-weight, photovoltaic solutions with high power density and efficiency. This paper describes effective failure analysis techniques to localize and characterize nonfunctional or underperforming MEPV cells. The defect localization methods such as electroluminescence under forward and reverse bias, as well as optical beam induced current using wavelengths above and below the device band gap, are presented. The current results also show that the MEPV has good resilience against degradation caused by reverse bias stresses. © 2013 IEEE.

More Details

Flat plate concentrators with large acceptance angle enabled by micro cells and mini lenses: performance evaluation

Cruz-Campa, Jose L.; Anderson, Benjamin J.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher N.; Nielson, Gregory N.; Saavedra, Michael P.; Ballance, Mark H.; Nguyen, Janet N.; Alford, Charles A.; Riley, Daniel R.; Okandan, Murat O.; Lentine, Anthony L.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Kratochvil, Jay A.

Abstract not provided.

Advanced compound semiconductor and silicon fabrication techniques for next-generation solar power systems

ECS Transactions

Nielson, Gregory N.; Okandan, Murat O.; Cruz-Campa, Jose L.; Gupta, Vipin P.; Resnick, Paul J.; Sanchez, Carlos A.; Paap, Scott M.; Kim, B.; Sweatt, W.C.; Lentine, Anthony L.; Cederberg, Jeffrey G.; Tauke-Pedretti, Anna; Jared, B.H.; Anderson, Benjamin J.; Biefeld, Robert M.; Nelson, J.S.

Microsystem technologies have the potential to significantly improve the performance, reduce the cost, and extend the capabilities of solar power systems. These benefits are possible due to a number of significant beneficial scaling effects within solar cells, modules, and systems that are manifested as the size of solar cells decrease to the sub-millimeter range. To exploit these benefits, we are using advanced fabrication techniques to create solar cells from a variety of compound semiconductors and silicon that have lateral dimensions of 250 - 1000 μm and are 1 - 20 μm thick. These fabrication techniques come out of relatively mature microsystem technologies such as integrated circuits (IC) and microelectromechanical systems (MEMS) which provide added supply chain and scale-up benefits compared to even incumbent PV technologies. © The Electrochemical Society.

More Details

Fabrication of lattice mismatched multijunction photovoltaic cells using 3D integration concepts

Conference Record of the IEEE Photovoltaic Specialists Conference

Cruz-Campa, Jose L.; Nielson, Gregory N.; Lentine, Anthony L.; Filatov, Anton A.; Resnick, Paul J.; Sanchez, Carlos A.; Rowen, Adam M.; Okandan, Murat O.; Gupta, Vipin P.; Nelson, Jeffrey S.

We present the experimental procedure to create lattice mismatched multijunction photovoltaic (PV) cells using 3D integration concepts. Lattice mismatched multijunction photovoltaic (PV) cells with decoupled electrical outputs could achieve higher efficiencies than current-matched monolithic devices. Growing lattice mismatched materials as a monolithic structure generates defects and decreases performance. We propose using methods from the integrated circuits and microsystems arena to produce the PV cell. The fabricated device consists of an ultrathin (6 μm) series connected InGaP/GaAs PV cell mechanically stacked on top of an electrically independent silicon cell. The InGaP/GaAs PV cell was processed to produce a small cell (750 μm) with back-contacts where all of the contacts sit at the same level. The dual junction and the silicon (c-Si) cell are electrically decoupled and the power from both cells is accessible through pads on the c-Si PV cell. Through this approach, we were able to fabricate a functional double junction PV cell mechanically attached to a c-Si PV cell with independent connections. © 2012 IEEE.

More Details

Silicon microring modulator with integrated heater and temperature sensor for thermal control

Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010

DeRose, Christopher T.; Watts, Michael W.; Trotter, Douglas C.; Luck, David L.; Nielson, Gregory N.; Young, Ralph W.

The first demonstration of a silicon microring modulator with both an integrated resistive heater and diode-based temperature sensor is shown. The temperature-sensor exhibits a linear response for more than an 85 °C external temperature range. ©2010 Optical Society of America.

More Details

Thin and small form factor cells : simulated behavior

Cruz-Campa, Jose L.; Okandan, Murat O.; Resnick, Paul J.; Grubbs, Robert K.; Clews, Peggy J.; Pluym, Tammy P.; Young, Ralph W.; Gupta, Vipin P.; Nielson, Gregory N.

Thin and small form factor cells have been researched lately by several research groups around the world due to possible lower assembly costs and reduced material consumption with higher efficiencies. Given the popularity of these devices, it is important to have detailed information about the behavior of these devices. Simulation of fabrication processes and device performance reveals some of the advantages and behavior of solar cells that are thin and small. Three main effects were studied: the effect of surface recombination on the optimum thickness, efficiency, and current density, the effect of contact distance on the efficiency for thin cells, and lastly the effect of surface recombination on the grams per Watt-peak. Results show that high efficiency can be obtained in thin devices if they are well-passivated and the distance between contacts is short. Furthermore, the ratio of grams per Watt-peak is greatly reduced as the device is thinned.

More Details

Back-contacted and small form factor GaAs solar cell

Cruz-Campa, Jose L.; Nielson, Gregory N.; Okandan, Murat O.; Sanchez, Carlos A.; Resnick, Paul J.; Clews, Peggy J.; Pluym, Tammy P.; Gupta, Vipin P.

We present a newly developed microsystem enabled, back-contacted, shade-free GaAs solar cell. Using microsystem tools, we created sturdy 3 {micro}m thick devices with lateral dimensions of 250 {micro}m, 500 {micro}m, 1 mm, and 2 mm. The fabrication procedure and the results of characterization tests are discussed. The highest efficiency cell had a lateral size of 500 {micro}m and a conversion efficiency of 10%, open circuit voltage of 0.9 V and a current density of 14.9 mA/cm{sup 2} under one-sun illumination.

More Details

Back contacted and small form factor GAAS solar cell

Cruz-Campa, Jose L.; Nielson, Gregory N.; Okandan, Murat O.; Sanchez, Carlos A.; Resnick, Paul J.; Clews, Peggy J.; Pluym, Tammy P.; Gupta, Vipin P.

We present a newly developed microsystem enabled, back-contacted, shade-free GaAs solar cell. Using microsystem tools, we created sturdy 3 {micro}m thick devices with lateral dimensions of 250 {micro}m, 500 {micro}m, 1 mm, and 2 mm. The fabrication procedure and the results of characterization tests are discussed. The highest efficiency cell had a lateral size of 500 {micro}m and a conversion efficiency of 10%, open circuit voltage of 0.9 V and a current density of 14.9 mA/cm{sup 2} under one-sun illumination.

More Details

Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics

2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference, CLEO/QELS 2009

Watts, Michael W.; Zortman, William A.; Trotter, Douglas C.; Nielson, Gregory N.; Luck, David L.; Young, Ralph W.

A new class of microphotonic-resonators, Adiabatic Resonant Microrings (ARMs), is introduced. The ARM resonator geometry enables heater elements to be formed within the resonator, simultaneously enabling record low-power (4.4μW/GHz) and record high-speed (1μs) thermal tuning. ©2009 Optical Society of America.

More Details

Thermal Microphotonic Focal Plane Array (TM-FPA)

Lentine, Anthony L.; Nielson, Gregory N.; Wright, Jeremy B.; Peters, D.W.; Zortman, William A.; McCormick, Frederick B.

The advent of high quality factor (Q) microphotonic-resonators has led to the demonstration of high-fidelity optical sensors of many physical phenomena (e.g. mechanical, chemical, and biological sensing) often with far better sensitivity than traditional techniques. Microphotonic-resonators also offer potential advantages as uncooled thermal detectors including significantly better noise performance, smaller pixel size, and faster response times than current thermal detectors. In particular, microphotonic thermal detectors do not suffer from Johnson noise in the sensor, offer far greater responsivity, and greater thermal isolation as they do not require metallic leads to the sensing element. Such advantages make the prospect of a microphotonic thermal imager highly attractive. Here, we introduce the microphotonic thermal detection technique, present the theoretical basis for the approach, discuss our progress on the development of this technology and consider future directions for thermal microphotonic imaging. Already we have demonstrated viability of device fabrication with the successful demonstration of a 20{micro}m pixel, and a scalable readout technique. Further, to date, we have achieved internal noise performance (NEP{sub Internal} < 1pW/{radical}Hz) in a 20{micro}m pixel thereby exceeding the noise performance of the best microbolometers while simultaneously demonstrating a thermal time constant ({tau} = 2ms) that is five times faster. In all, this results in an internal detectivity of D*{sub internal} = 2 x 10{sup 9}cm {center_dot} {radical}Hz/W, while roughly a factor of four better than the best uncooled commercial microbolometers, future demonstrations should enable another order of magnitude in sensitivity. While much work remains to achieve the level of maturity required for a deployable technology, already, microphotonic thermal detection has demonstrated considerable potential.

More Details

SOI-Enabled MEMS Processes Lead to Novel Mechanical Optical and Atomic Physics Devices Presentation

Herrera, Gilbert V.; McCormick, Frederick B.; Nielson, Gregory N.; Nordquist, Christopher N.; Okandan, Murat O.; Olsson, Roy H.; Ortiz, Keith O.; Platzbecker, Mark R.; Resnick, Paul J.; Shul, Randy J.; Bauer, Todd B.; Sullivan, Charles T.; Watts, Michael W.; Blain, Matthew G.; Dodd, Paul E.; Dondero, Richard D.; Garcia, Ernest J.; Galambos, Paul; Hetherington, Dale L.; Hudgens, James J.

Abstract not provided.

SOI-Enabled MEMS Processes Lead to Novel Mechanical Optical and Atomic Physics Devices

Herrera, Gilbert V.; McCormick, Frederick B.; Nielson, Gregory N.; Nordquist, Christopher N.; Okandan, Murat O.; Olsson, Roy H.; Ortiz, Keith O.; Platzbecker, Mark R.; Resnick, Paul J.; Shul, Randy J.; Bauer, Todd B.; Sullivan, Charles T.; Watts, Michael W.; Blain, Matthew G.; Dodd, Paul E.; Dondero, Richard D.; Garcia, Ernest J.; Galambos, Paul; Hetherington, Dale L.; Hudgens, James J.

Abstract not provided.

Fabrication techniques for creating a thermally isolated TM-FPA (thermal microphotonic focal plane array)

Proceedings of SPIE - The International Society for Optical Engineering

Watts, Michael W.; Watts, Michael W.; Nielson, Gregory N.

A novel fabrication strategy has produced optical microring-resonator-based thermal detectors. The detectors are based on the thermo-optic effect and are thermally isolated from a silicon wafer substrate so as to maximize the temperature excursion for a given amount of incident radiation and minimize the impact of thermal phonon noise. The combination of high-Q, thermal isolation, and lack of Johnson noise offers thermal microphotonic detectors the potential to achieve significantly greater room temperature sensitivity than standard bolometric techniques. Several batch fabrication strategies were investigated for producing thermal microphotonic detectors using waveguide materials such as LPCVD Silicon Nitride (Si3N4) on Oxide and Silicon on Insulator (SOI). Fabrication challenges and loss reduction strategies will be presented along with some initial infrared detection results.

More Details

A physically based model for dielectric charging in an integrated optical MEMS wavelength selective switch

IEEE/LEOS Optical MEMS 2005: International Conference on Optical MEMS and Their Applications

Nielson, Gregory N.; Barbastathis, George

A physical parameter based model for dielectric charge accumulation is proposed and used to predict the displacement versus applied voltage and pull-in response of an electrostatic MEMS wavelength selective integrated optical switch. ©2005 IEEE.

More Details

On the use of titanium nitride as structural material for Nano-Electro-Mechanical Systems (NEMS)

Nielson, Gregory N.

The introduction of new multifunctional materials provides the potential for expanding the realm of microsystems device design and applications. Titanium nitride is identified as an attractive candidate material for use in NEMS applications given its favorable electrical, mechanical and chemical properties thereby enabling its use in high frequency applications and in harsh environments. We demonstrate TiN NEMS structures and low temperature residual stress control of the TiN comprising those structures. Potential applications of TiN as a NEMS structural material are discussed, with particular emphasis on active nanophotonic devices.

More Details
112 Results
112 Results