Publications

30 Results
Skip to search filters

An evaluation of possible next-generation high temperature molten-salt power towers

Kolb, Gregory J.

Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

More Details

Power Tower Technology Roadmap and cost reduction plan

Kolb, Gregory J.; Ho, Clifford K.; Mancini, Thomas R.

Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

More Details

Design considerations for concentrating solar power tower systems employing molten salt

Vernon, Milton E.; Ho, Clifford K.; Siegel, Nathan P.; Kolb, Gregory J.

The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

More Details

Evaluation of annual performance of 2-tank and thermocline thermal storage for trough plants

Kolb, Gregory J.

A study was performed to compare the annual performance of 50 MW{sub e} Andasol-like trough plants that employ either a 2-tank or a thermocline-type molten-salt thermal storage system. trnsys software was used to create the plant models and to perform the annual simulations. The annual performance of each plant was found to be nearly identical in the base-case comparison. The reason that the thermocline exhibited nearly the same performance is primarily due to the ability of many trough power blocks to operate at a temperature that is significantly below the design point. However, if temperatures close to the design point are required, the performance of the 2-tank plant would be significantly better than the thermocline.

More Details

Incorporating uncertainty into probabilistic performance models of concentrating solar power plants

Journal of Solar Energy Engineering, Transactions of the ASME

Ho, Clifford K.; Kolb, Gregory J.

A method for applying probabilistic models to concentrating solar-thermal power plants is described in this paper. The benefits of using probabilistic models include quantification of uncertainties inherent in the system and characterization of their impact on system performance and economics. Sensitivity studies using stepwise regression analysis can identify and rank the most important parameters and processes as a means to prioritize future research and activities. The probabilistic method begins with the identification of uncertain variables and the assignment of appropriate distributions for those variables. Those parameters are then sampled using a stratified method (Latin hypercube sampling) to ensure complete and representative sampling from each distribution. Models of performance, reliability, and cost are then simulated multiple times using the sampled set of parameters. The results yield a cumulative distribution function that can be used to quantify the probability of exceeding (or being less than) a particular value. Two examples, a simple cost model and a more detailed performance model of a hypothetical 100-MW e power tower, are provided to illustrate the methods. Copyright © 2010 by ASME.

More Details

Current and future costs for parabolic trough and power tower systems in the US market

Ho, Clifford K.; Kolb, Gregory J.

NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

More Details

Experimental validation of different modeling approaches for solid particle receivers

Ho, Clifford K.; Khalsa, Siri S.; Siegel, Nathan P.; Kolb, Gregory J.

Solid particle receivers have the potential to provide high-temperature heat for advanced power cycles, thermochemical processes, and thermal storage via direct particle absorption of concentrated solar energy. This paper presents two different models to evaluate the performance of these systems. One model is a detailed computational fluid dynamics model using FLUENT that includes irradiation from the concentrated solar flux, two-band re-radiation and emission within the cavity, discrete-phase particle transport and heat transfer, gas-phase convection, wall conduction, and radiative and convective heat losses. The second model is an easy-to-use and fast simulation code using Matlab that includes solar and thermal radiation exchange between the particle curtain, cavity walls, and aperture, but neglects convection. Both models were compared to unheated particle flow tests and to on-sun heating tests. Comparisons between measured and simulated particle velocities, opacity, particle volume fractions, particle temperatures, and thermal efficiencies were found to be in good agreement. Sensitivity studies were also performed with the models to identify parameters and modifications to improve the performance of the solid particle receiver.

More Details

Screening analysis of solar thermochemical hydrogen concepts

Kolb, Gregory J.; Diver, Richard B.

A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

More Details

Heliostat cost reduction study

Donnelly, Mathew W.; Kolb, Gregory J.

Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

More Details

Central-station solar hydrogen power plant

Kolb, Gregory J.; Diver, Richard B.; Siegel, Nathan P.

Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature ({approx}1000 C) power tower with a sulfuric acid/hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is 'hybrid' because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.

More Details

Final Test and Evaluation Results from the Solar Two Project

Bradshaw, Robert W.; Pacheco, James E.; Prairie, Michael R.; Reilly, Hugh E.; Showalter, Steven K.; Pacheco, James E.; Dawson, Daniel B.; Goods, Steven H.; Kolb, Gregory J.

Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.

More Details

An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project

Reilly, Hugh E.; Kolb, Gregory J.

This report utilizes the results of the Solar Two project, as well as continuing technology development, to update the technical and economic status of molten-salt power towers. The report starts with an overview of power tower technology, including the progression from Solar One to the Solar Two project. This discussion is followed by a review of the Solar Two project--what was planned, what actually occurred, what was learned, and what was accomplished. The third section presents preliminary information regarding the likely configuration of the next molten-salt power tower plant. This section draws on Solar Two experience as well as results of continuing power tower development efforts conducted jointly by industry and Sandia National Laboratories. The fourth section details the expected performance and cost goals for the first commercial molten-salt power tower plant and includes a comparison of the commercial performance goals to the actual performance at Solar One and Solar Two. The final section summarizes the successes of Solar Two and the current technology development activities. The data collected from the Solar Two project suggest that the electricity cost goals established for power towers are reasonable and can be achieved with some simple design improvements.

More Details

Solar Two technology for Mexico

Revista Solar

Kolb, Gregory J.; Strachan, John W.; Strachan, John W.

Solar power towers, based on molten salt technology, have been the subject of extensive research and development since the late 1970s. In the mid 1980s, small experimental plants were successfully fielded in the USA and France that demonstrated the feasibility of the concept at a 1 to 2 MW{sub e} scale. Systems analyses indicate this technology will be cost competitive with coal-fired power plants after scaling-up plant size to the 100 to 200 MW{sub e} range. To help bridge the scale-up gap, a 10 MW{sub e} demonstration project known as Solar Two, was successfully operated in California, USA from 1996 to 1999. The next logical step could be to scale-up further and develop a 30 MW{sub e} project within the country of Mexico. The plant could be built by an IPP industrial consortium consisting of USA's Boeing and Bechtel Corporations, combined with Mexican industrial and financial partners. Plausible technical and financial characteristics of such a ``Solar-Two-type'' Mexican project are discussed in this paper.

More Details

Summary of the Solar Two Test and Evaluation Program

Pacheco, James E.; Reilly, Hugh E.; Kolb, Gregory J.; Tyner, Craig E.

Solar Two was a collaborative, cost-shared project between eleven US industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, was comprised of 1926 heliostats, a receiver, a thermal storage system and a steam generation system. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10 MWe, conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This paper describes the significant results from the test and evaluation activities.

More Details
30 Results
30 Results