Influence of the alkoxide group solvent catalyst and concentration on the gelation and porosity of hexylene-bridged polysilsesquioxanes
Journal of Non-Crystalline Solids
Abstract not provided.
Journal of Non-Crystalline Solids
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
The use of photosensitive materials for the development of integrated, refractive-index structures supporting telecom, remote sensing, and varied optical beam manipulation applications is well established. Our investigations of photosensitive phenomena in polysilanes, however, have been motivated by the desire to configure, or program, the photonic device function immediately prior to use. Such an operational mode imposes requirements on wavelength sensitivity, incident fluence and environmental conditions that are not typical of more conventional applications of photosensitive material. The present paper focuses on our efforts to understand and manipulate photosensitivity in polysilane thin films under different excitation wavelengths, local atmospheric compositions and thermal history in this context. We find that the photoresponse can be influenced through the control of such optical exposure conditions, thereby influencing the magnitude of the photoinduced refractive-index change attained.
Abstract not provided.
Abstract not provided.
Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B
Polysilane materials exhibit large photo-induced refractive index changes under low incident optical fluences, making them attractive candidates for applications in which rapid patterning of photonic device structures is desired immediately prior to their use. This agile fabrication strategy for integrated photonics inherently requires that optical exposure, and associated material response, occurs in nonlaboratory environments, motivating the study of environmental conditions on the photoinduced response of the material. The present work examines the impact of atmosphere on the photosensitive response of poly(methylphenylsilane) (PMPS) thin films in terms of both photoinduced absorption change and refractive index modification. Material was subjected to UV light exposure resonant with the lowest energy optical transition associated with the conjugated Si-Si backbone. Exposures were performed in both aerobic and anaerobic atmospheres (oxygen, air, nitrogen, and 5% H2/95% N 2). The results clearly demonstrate that the photosensitive response of this model polysilane material was dramatically affected by local environment, exhibiting a photoinduced refractive index change, when exposed under an oxygen containing atmosphere, that was twice that observed under anaerobic conditions. This effect is discussed in terms of photo-oxidation processes within the polysilane structure and in the context of the need for predictable photosensitive refractive index change in varied photoimprinting environments.
Abstract not provided.
The manipulation of physical interactions between structural moieties on the molecular scale is a fundamental hurdle in the realization and operation of nanostructured materials and high surface area microsystem architectures. These include such nano-interaction-based phenomena as self-assembly, fluid flow, and interfacial tribology. The proposed research utilizes photosensitive molecular structures to tune such interactions reversibly. This new material strategy provides optical actuation of nano-interactions impacting behavior on both the nano- and macroscales and with potential to impact directed nanostructure formation, microfluidic rheology, and tribological control.
Proposed for publication in Journal of the American Chemical Society.
Abstract not provided.
A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.