Publications

7 Results
Skip to search filters

Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling

Broome, Scott T.; Flint, Gregory M.; Dewers, Thomas D.; Newell, Pania N.

This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failure and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.

More Details

Behavior of salt from the Bayou Choctaw salt dome

49th US Rock Mechanics / Geomechanics Symposium 2015

Ingraham, Mathew D.; Broome, Scott T.; Bauer, Stephen J.; Barrow, Perry C.; Flint, Gregory M.

A laboratory testing program was developed to examine the short-term mechanical and time-dependent (creep) behavior of salt from the Bayou Choctaw Salt Dome. Core was tested under creep and quasi-static constant mean stress axisymmetric compression, and constant mean stress axisymmetric extension conditions. Creep tests were performed at 38 degrees Celsius, and the axisymmetric tests were performed at ambient temperatures (22-26 degrees Celsius). The testing performed indicates that the dilation criterion is pressure and stress state dependent. It was found that as the mean stress increases, the shear stress required to cause dilation increases. The results for this salt are reasonably consistent with those observed for other domal salts. Also it was observed that tests performed under extensile conditions required consistently lower shear stress to cause dilation for the same mean stress, which is consistent with other domal salts. Young's modulus ranged from 27.2 to 58.7 GPa with an average of 44.4 GPa, with Poisson's ratio ranging from 0.10 to 0.43 with an average of 0.30. Creep testing indicates that the BC salt is intermediate in creep resistance when compared with other bedded and domal salt steady-state behavior.

More Details

Geomechanical testing of Bayou Choctaw 102B core for SPR analysis

Ingraham, Mathew D.; Bauer, Stephen J.; Broome, Scott T.; Flint, Gregory M.; Barrow, Perry C.

A laboratory testing program was developed to examine the short-term mechanical and time-dependent (creep) behavior of salt from the Bayou Choctaw Salt Dome. This report documents the test methodologies, and constitutive properties inferred from tests performed. These are used to extend our understanding of the mechanical behavior of the Bayou Choctaw domal salt and provide a data set for numerical analyses. The resulting information will be used to support numerical analyses of the current state of the Bayou Choctaw Dome as it relates to its crude oil storage function as part of the US Strategic Petroleum Reserve. Core obtained from Drill Hole BC-102B was tested under creep and quasi-static constant mean stress axisymmetric compression, and constant mean stress axisymmetric extension conditions. Creep tests were performed at 100 degrees Fahrenheit, and the axisymmetric tests were performed at ambient temperatures (72-78 degrees Fahrenheit). The testing performed indicates that the dilation criterion is pressure and stress state dependent. It was found that as the mean stress increases, the shear stress required to cause dilation increases. The results for this salt are reasonably consistent with those observed for other domal salts. Also it was observed that tests performed under extensile conditions required consistently lower shear stress to cause dilation for the same mean stress, which is consistent with other domal salts. Young's moduli ranged from 3.95 x 106 to 8.51 x 106 psi with an average of 6.44 x 106 psi, with Poisson's ratios ranging from 0.10 to 0.43 with an average of 0.30. Creep testing indicates that the BC salt is intermediate in creep resistance when compared with other bedded and domal salt steady-state behavior.

More Details

Thermophysical properties of BKC 44306 and BKC 44307 PMDI urethane solid and foams

Bauer, Stephen J.; Flint, Gregory M.; Mondy, L.A.

Accurate knowledge of thermophysical properties of urethane foam is considered extremely important for meaningful models and analyses to be developed of scenarios wherein the foam is heated. Its performance at temperature requires a solid understanding of the foam material properties at temperature. Also, foam properties vary with density/porosity. An experimental program to determine the thermal properties of the two foams and their parent solid urethane was developed in order to support development of a predictive model relating density and thermal properties from first principles. Thermal properties (thermal conductivity, diffusivity, and specific heat) of the foam were found to vary with temperatures from 26°C to 90°C. Thermal conductivity generally increases with increasing temperature for a given initial density and ranges from .0433 W/mK at 26°C to .0811 W/mK at 90°C; thermal diffusivity generally decreases with increasing temperature for a given initial density and ranges from .4101 mm2/s at 26°C to .1263 mm2/s at 90°C; and specific heat generally increases with increasing temperature for a given initial density and ranges from .1078 MJ/m3K at 26°C to .6323 MJ/m3K at 90°C. Thermal properties of the solid urethane were also found to vary with temperatures from 26°C to 90°C. Average thermal conductivity generally increases with increasing temperature for a given initial density and ranges from 0.126 to 0.131 W/mK at 26°C to 0.153 to 0.157 W/mK at 90°C; average thermal diffusivity generally decreases with increasing temperature for a given initial density and ranges from 0.142 to 0.147 mm2/s at 26°C to 0.124 to 0.125 mm2/s at 90°C; and average specific heat generally increases with increasing temperature for a given initial density and ranges from 0.889 to 0.899 MJ/m3K to 1.229 to 1.274 MJ/m3K at 90°C. The density of both foam and solid urethane decreased with increasing temperature.

More Details

Thermophysical Properties of Launch Complex 17 of the Cape Canaveral Concrete

Bauer, Stephen J.; Flint, Gregory M.

Accurate knowledge of thermophysical properties of concrete is considered extremely important for meaningful models to be developed of scenarios wherein the concrete is rapidly heated. Test of solid propellant burns on samples of concrete from Launch Complex 17 of the Cape Canaveral show spallation and fragmentation. In response to the need for accurate modeling scenarios of these observations, an experimental program to determine the permeability and thermal properties of the concrete was developed. Room temperature gas permeability measurements of Launch Complex 17 of the Cape Canaveral concrete dried at 50°C yield permeability estimates of 0.07mD (mean), and thermal properties (thermal conductivity, diffusivity, and specific heat) were found to vary with temperatures from room temperature to 300°C. Thermal conductivity ranges from 1.7-1.9 W/mK at 50°C to 1.0-1.15 W/mK at 300°C, thermal diffusivity ranges from 0.75-0.96 mm2/s at 50°C to 0.44-0.58 mm2/s at 300°C, and specific heat ranges from 1.76-2.32 /m3K to 2.00-2.50 /m3K at 300°C.

More Details
7 Results
7 Results