Publications

4 Results
Skip to search filters

Multiple Pursuer-Based Intercept via Forward Stochastic Reachability

Proceedings of the American Control Conference

Vinod, Abraham P.; Homchaudhuri, Baisravan; Hintz, Christoph; Parikh, Anup; Buerger, Stephen B.; Oishi, Meeko M.K.; Brunson, Gregory; Ahmad, Shakeeb; Fierro, Rafael

We discuss the multiple pursuer-based intercept of a threat unmanned aerial system (UAS) with stochastic dynamics via multiple pursuing UASs, using forward stochastic reachability and receding horizon control techniques. We formulate a stochastic model for the threat that can emulate the potentially adversarial behavior and is amenable to the existing scalable results in forward stochastic reachability literature. The optimal state for the intercept for each individual pursuer is obtained via a log-concave optimization problem, and the open-loop control paths are obtained via a convex optimization problem. With stochasticity modeled as a Gaussian process, we can approximate the optimization problem as a quadratic program, to enable real-time path planning. We also incorporate real-time sensing into the path planning by using a receding horizon controller, to improve the intercept probabilities. We validate the proposed framework via hardware experiments.

More Details

Improving robotic actuator torque density and efficiency through enhanced heat transfer

ASME 2016 Dynamic Systems and Control Conference, DSCC 2016

Mazumdar, Anirban; Spencer, Steven; Hobart, Clinton G.; Kuehl, Michael K.; Brunson, Gregory; Coleman, Nadia; Buerger, Stephen B.

Electric motors are a popular choice for mobile robots because they can provide high peak efficiencies, high speeds, and quiet operation. However, the continuous torque performance of these actuators is thermally limited due to joule heating, which can ultimately cause insulation breakdown. In this work we illustrate how motor housing design and active cooling can be used to significantly improve the ability of the motor to transfer heat to the environment. This can increase continuous torque density and reduce energy consumption. We present a novel housing design for brushless DC motors that provides improved heat transfer. This design achieves a 50% increase in heat transfer over a nominal design. Additionally, forced air or water cooling can be easily added to this configuration. Forced convection increases heat transfer over the nominal design by 79%with forced air and 107% with pumped water. Finally, we show how increased heat transfer reduces power consumption and we demonstrate that strategically spending energy on cooling can provide net energy savings of 4%-6%.

More Details
4 Results
4 Results