Publications

23 Results
Skip to search filters

30 CM horizontal drop of a surrogate 17x17 pwr fuel assembly

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Kalinina, Elena A.; Ammerman, Douglas J.; Grey, Carissa A.; Flores, Gregg J.; Lujan, Lucas; Saltzstein, Sylvia J.; Michel, Danielle M.

The 30 cm drop is the remaining NRC normal conditions of transport (NCT) regulatory requirement (10 CFR 71.71) for which there are no data on the response of spent fuel. While obtaining data on the spent fuel is not a direct requirement, it allows for quantifying the risk of fuel breakage resulting from a cask drop from a height of 30 cm or less. Because a full-scale cask and impact limiters are very expensive, 3 consecutive drop tests were conducted to obtain strains on a full-scale surrogate 17x17 PWR assembly. The first step was a 30 cm drop of a 1/3 scale cask loaded with dummy assemblies. The second step was a 30 cm drop test of a full-scale dummy assembly. The third step was a 30 cm drop of a full-scale surrogate assembly. The results of this final test are presented in this paper. The test was conducted in May 2020. The acceleration pulses on the surrogate assembly were in good agreement with the expected pulses derived from steps 1 and 2. This confirmed that during the 30 cm drop the surrogate assembly experienced the same conditions as it would have if it had been dropped in a full-scale cask with impact limiters. The surrogate assembly was instrumented with 27 strain gauges. Pressure paper was inserted between the rods within the two long and two short spacer grid spans in order to register the pressure in case of rod-to-rod contact. The maximum observed peak strain on the surrogate assembly was 1,724 microstrain at the bottom end of the assembly. The pressure paper sheets from the two short spans were blank. The pressure paper sheets from the two long spans, except a few middle ones, showed marks indicating rod-to-rod contact. The maximum estimated contact pressure was 4,100 psi. The longitudinal bending stress corresponding to the maximum observed strain value (calculated from the stress-strain curve for low burnup cladding) was 22,230 psi. Both values are significantly below the yield strength of the cladding. The major conclusion is that the fuel rods will maintain their integrity following a 30 cm drop inside of a transportation cask.

More Details

Full-Scale Assembly 30 cm Drop Test

MRS Advances

Kalinina, Elena A.; Ammerman, Douglas J.; Grey, Carissa A.; Flores, Gregg J.; Saltzstein, Sylvia J.; Klymyshyn, Nicholas

Can Spent Nuclear Fuel withstand the shocks and vibrations experienced during normal conditions of transport? This question was the motivation for the multi-modal transportation test (MMTT) (Summer 2017), 1/3-scale cask 30 cm drop test (December 2018), and full-scale assembly 30 cm drop tests (June 2019). The full-scale ENSA ENUN 32P cask with 3 surrogate 17x17 PWR assemblies was used in the MMTT. The 1/3-scale cask was a mockup of this cask. The 30 cm drop tests provided the accelerations on the 1/3-scale dummy assemblies. These data were used to design full-scale assembly drop tests with the goal to quantify the strain fuel rods experience inside a cask when dropped from a height of 30 cm. The drop tests were first done with the dummy and then with the surrogate assembly. This paper presents the preliminary results of the tests.

More Details

30 cm Drop Tests

Kalinina, Elena A.; Ammerman, Douglas J.; Grey, Carissa A.; Arviso, Michael A.; Wright, Catherine W.; Lujan, Lucas A.; Flores, Gregg J.; Saltzstein, Sylvia J.

The data from the multi-modal transportation test conducted in 2017 demonstrated that the inputs from the shock events during all transport modes (truck, rail, and ship) were amplified from the cask to the spent commercial nuclear fuel surrogate assemblies. These data do not support common assumption that the cask content experiences the same accelerations as the cask itself. This was one of the motivations for conducting 30 cm drop tests. The goal of the 30 cm drop test is to measure accelerations and strains on the surrogate spent nuclear fuel assembly and to determine whether the fuel rods can maintain their integrity inside a transportation cask when dropped from a height of 30 cm. The 30 cm drop is the remaining NRC normal conditions of transportation regulatory requirement (10 CFR 71.71) for which there are no data on the actual surrogate fuel. Because the full-scale cask and impact limiters were not available (and their cost was prohibitive), it was proposed to achieve this goal by conducting three separate tests. This report describes the first two tests — the 30 cm drop test of the 1/3 scale cask (conducted in December 2018) and the 30 cm drop of the full-scale dummy assembly (conducted in June 2019). The dummy assembly represents the mass of a real spent nuclear fuel assembly. The third test (to be conducted in the spring of 2020) will be the 30 cm drop of the full-scale surrogate assembly. The surrogate assembly represents a real full-scale assembly in physical, material, and mechanical characteristics, as well as in mass.

More Details

Summary of the nuclear risk assessment for the Mars 2020 mission environmental impact statement

Nuclear and Emerging Technologies for Space, NETS 2015

Clayton, Daniel J.; Bignell, John B.; Jones, Christopher A.; Rohe, Daniel P.; Flores, Gregg J.; Bartel, Timothy J.; Gelbard, Fred G.; Le, San L.; Morrow, Charles W.; Potter, Donald L.; Young, Larry W.; Bixler, Nathan E.; Lipinski, Ronald J.

In the summer of 2020, the National Aeronautics and Space Administration (NASA) plans to launch a spacecraft as part of the Mars 2020 mission. One option for the rover on the proposed spacecraft uses a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to provide continuous electrical and thermal power for the mission. NASA has prepared an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act. The EIS includes information on the risks of mission accidents to the general public and on-site workers at the launch complex. The Nuclear Risk Assessment (NRA) addresses the responses of the MMRTG option to potential accident and abort conditions during the launch opportunity for the Mars 2020 mission and the associated consequences. This information provides the technical basis for the radiological risks of the MMRTG option for the EIS. This paper provides a summary of the methods and results used in the NRA.

More Details

Nuclear risk assessment for the Mars 2020 mission environmental impact statement

Clayton, Daniel J.; Potter, Donald L.; Young, Larry W.; Bixler, Nathan E.; Lipinski, Ronald J.; Bignell, John B.; Jones, Christopher A.; Rohe, Daniel P.; Flores, Gregg J.; Bartel, Timothy J.; Gelbard, Fred G.; Le, San L.; Morrow, Charles W.

In the summer of 2020, the National Aeronautics and Space Administration (NASA) plans to launch a spacecraft as part of the Mars 2020 mission. One option for the rover on the proposed spacecraft uses a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to provide continuous electrical and thermal power for the mission. An alternative option being considered is a set of solar panels for electrical power with up to 80 Light-Weight Radioisotope Heater Units (LWRHUs) for local component heating. Both the MMRTG and the LWRHUs use radioactive plutonium dioxide. NASA is preparing an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act. The EIS will include information on the risks of mission accidents to the general public and on-site workers at the launch complex. This Nuclear Risk Assessment (NRA) addresses the responses of the MMRTG or LWRHU options to potential accident and abort conditions during the launch opportunity for the Mars 2020 mission and the associated consequences. This information provides the technical basis for the radiological risks of both options for the EIS.

More Details
23 Results
23 Results