Publications

9 Results
Skip to search filters

Isolating the effects of reactivity stratification in reactivity-controlled compression ignition with iso-octane and n-heptane on a light-duty multi-cylinder engine*

International Journal of Engine Research

Wissink, Martin L.; Curran, Scott J.; Roberts, Greg R.; Musculus, Mark P.; Mounaïm-Rousselle, Christine

Reactivity-controlled compression ignition (RCCI) is a dual-fuel variant of low-temperature combustion that uses in-cylinder fuel stratification to control the rate of reactions occurring during combustion. Using fuels of varying reactivity (autoignition propensity), gradients of reactivity can be established within the charge, allowing for control over combustion phasing and duration for high efficiency while achieving low NOx and soot emissions. In practice, this is typically accomplished by premixing a low-reactivity fuel, such as gasoline, with early port or direct injection, and by direct injecting a high-reactivity fuel, such as diesel, at an intermediate timing before top dead center. Both the relative quantity and the timing of the injection(s) of high-reactivity fuel can be used to tailor the combustion process and thereby the efficiency and emissions under RCCI. While many combinations of high- and low-reactivity fuels have been successfully demonstrated to enable RCCI, there is a lack of fundamental understanding of what properties, chemical or physical, are most important or desirable for extending operation to both lower and higher loads and reducing emissions of unreacted fuel and CO. This is partly due to the fact that important variables such as temperature, equivalence ratio, and reactivity change simultaneously in both a local and a global sense with changes in the injection of the high-reactivity fuel. This study uses primary reference fuels iso-octane and n-heptane, which have similar physical properties but much different autoignition properties, to create both external and in-cylinder fuel blends that allow for the effects of reactivity stratification to be isolated and quantified. This study is part of a collaborative effort with researchers at Sandia National Laboratories who are investigating the same fuels and conditions of interest in an optical engine. This collaboration aims to improve our fundamental understanding of what fuel properties are required to further develop advanced combustion modes.

More Details

RCCI Combustion Regime Transitions in a Single-Cylinder Optical Engine and a Multi-Cylinder Metal Engine

SAE International Journal of Engines

Roberts, Greg R.; Rousselle, Christine M.; Musculus, Mark P.; Wissink, Martin; Curran, Scott; Eagle, Ethan

Reactivity Controlled Compression Ignition (RCCI) is an approach to increase engine efficiency and lower engine-out emissions by using in-cylinder stratification of fuels with differing reactivity (i.e., autoignition characteristics) to control combustion phasing. Stratification can be altered by varying the injection timing of the high-reactivity fuel, causing transitions across multiple regimes of combustion. When injection is sufficiently early, combustion approaches a highly-premixed autoignition regime, and when it is sufficiently late it approaches more mixing-controlled, diesel-like conditions. Engine performance, emissions, and control authority over combustion phasing with injection timing are most favorable in between, within the RCCI regime. To study charge preparation phenomena that dictate regime transitions, two different optical diagnostics are applied in a single-cylinder heavy-duty optical engine, and conventional engine diagnostics are applied in a multi-cylinder, light-duty all-metal engine. Both engines are operated with iso-octane and n-heptane as the low- and high-reactivity fuels, respectively. The iso-octane fuel fraction delivers 80% of the total fuel energy, the global equivalence ratio is 0.35, and no exhaust gas recirculation is used. In the optical engine, single-shot, band-pass infrared (IR) imaging of emission near 3.3 microns measures thermal C-H stretch-band emission of hot fuel vapor and intermediate combustion products, providing qualitative information about the fuel-vapor distribution and ignition locations during low-temperature heat release. Additionally, high-speed 7.2 kHz visible-light imaging of natural luminosity, optimized to detect chemiluminescence, indicates the spatial and temporal evolution of high-temperature heat release and combustion. Similar combustion regimes are observed for both engine platforms, allowing an opportunity for optical engine data to provide insight into fundamental phenomena affecting regime ranges and transitions in production engines. Key findings from imaging diagnostics indicate that at the late-injection limit of RCCI control authority, low-temperature ignition occurs when clearly identifiable jet structures are still intact, and during high-temperature combustion there is prevalent and persistent soot incandescence representative of locally mixing-limited (i.e., fuel-rich) combustion. At the early-injection limit of RCCI control, observed stratification during low-temperature ignition is subtle; however, high-temperature combustion still occurs sequentially from the bowl rim radially inwards.

More Details
9 Results
9 Results