Publications

8 Results
Skip to search filters

Enhanced Chemical Incident Response Plan (ECIRP). Appendix F, remediation analysis with Decision Support Tools (DSTs) for wide-area chemical hazards

Miller, Trisha H.; Foltz, Greg W.

The Defense Threat Reduction Agency (DTRA) commissioned an assessment of the Consequence Management (CM) plans in place on military bases for response to a chemical attack. The effectiveness of the CM plans for recovering from chemical incidents was modeled using a multiple Decision Support Tools (DSTs). First, a scenario was developed based on an aerial dispersion of a chemical agent over a wide-area of land. The extent of contamination was modeled with the Hazard Prediction and Assessment Capability (HPAC) tool. Subsequently, the Analyzer for Wide Area Restoration Effectiveness (AWARE) tool was used to estimate the cost and time demands for remediation based on input of contamination maps, sampling and decontamination resources, strategies, rates and costs. The sampling strategies incorporated in the calculation were designed using the Visual Sample Plan (VSP) tool. Based on a gaps assessment and the DST remediation analysis, an Enhanced Chemical Incident Response Plan (ECIRP) was developed.

More Details

Systems analysis of decontamination options for civilian vehicles

Miller, Trisha H.; Foltz, Greg W.

The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposed to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.

More Details

A sensor management architecture concept for monitoring emissions from open-air demil operations

Horn, Brent A.; Foltz, Greg W.; Johnson, Michael M.; Stoddard, Mary C.

Sandia National Laboratories, CA proposed a sensor concept to detect emissions from open-burning/open-detonation (OB/OD) events. The system would serve two purposes: (1) Provide data to demilitarization operations about process efficiency, allowing process optimization for cleaner emissions and higher efficiency. (2) Provide data to regulators and neighboring communities about materials dispersing into the environment by OB/OD operations. The proposed sensor system uses instrument control hardware and data visualization software developed at Sandia National Laboratories to link together an array of sensors to monitor emissions from OB/OD events. The suite of sensors would consist of various physical and chemical detectors mounted on stationary or mobile platforms. The individual sensors would be wirelessly linked to one another and controlled through a central command center. Real-time data collection from the sensors, combined with integrated visualization of the data at the command center, would allow for feedback to the sensors to alter operational conditions to adjust for changing needs (i.e., moving plume position, increased spatial resolution, increased sensitivity). This report presents a systems study of the problem of implementing a sensor system for monitoring OB/OD emissions. The goal of this study was to gain a fuller understanding of the political, economic, and technical issues for developing and fielding this technology.

More Details

Deployment of a Continuously Operated {mu}ChemLab

Adkins, Douglas R.; Kottenstette, Richard K.; Lewis, Patrick R.; Dulleck, George R.; Oborny, Michael C.; Gordon, Susanna P.; Foltz, Greg W.

A continuously operating prototype chemical weapons sensor system based on the {mu}ChemLab{trademark} technology was installed in the San Francisco International Airport in late June 2002. This prototype was assembled in a National Electric Manufacturers Association (NEMA) enclosure and controlled by a personal computer collocated with it. Data from the prototype was downloaded regularly and periodic calibration tests were performed through modem-operated control. The instrument was installed just downstream of the return air fans in the return air plenum of a high-use area of a boarding area. A CW Sentry, manufactured by Microsensor Systems, was installed alongside the {mu}ChemLab unit and results from its operation are reported elsewhere. Tests began on June 26, 2002 and concluded on October 16, 2002. This report will discuss the performance of the prototype during the continuous testing period. Over 70,000 test cycles were performed during this period. Data from this first field emplacement have indicated several areas where engineering improvements can be made for future field emplacement.

More Details
8 Results
8 Results