This SAND report provides the technical progress through October 2004 of the Sandia-led project, %22Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling,%22 funded by the DOE Office of Science Genomes to Life Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO2 are important terms in the global environmental response to anthropogenic atmospheric inputs of CO2 and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes. In addition, we will develop a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these - 4 - pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. The ultimate goal of this effort is develop and apply new experimental and computational methods needed to generate a new level of understanding of how the Synechococcus genome affects carbon fixation at the global scale. Anticipated experimental and computational methods will provide ever-increasing insight about the individual elements and steps in the carbon fixation process, however relating an organism's genome to its cellular response in the presence of varying environments will require systems biology approaches. Thus a primary goal for this effort is to integrate the genomic data generated from experiments and lower level simulations with data from the existing body of literature into a whole cell model. We plan to accomplish this by developing and applying a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats. These challenges are unprecedented in high performance scientific computing and necessitate the development of a companion computational infrastructure to support this effort. More information about this project, including a copy of the original proposal, can be found at www.genomes-to-life.org Acknowledgment We want to gratefully acknowledge the contributions of the GTL Project Team as follows: Grant S. Heffelfinger1*, Anthony Martino2, Andrey Gorin3, Ying Xu10,3, Mark D. Rintoul1, Al Geist3, Matthew Ennis1, Hashimi Al-Hashimi8, Nikita Arnold3, Andrei Borziak3, Bianca Brahamsha6, Andrea Belgrano12, Praveen Chandramohan3, Xin Chen9, Pan Chongle3, Paul Crozier1, PguongAn Dam10, George S. Davidson1, Robert Day3, Jean Loup Faulon2, Damian Gessler12, Arlene Gonzalez2, David Haaland1, William Hart1, Victor Havin3, Tao Jiang9, Howland Jones1, David Jung3, Ramya Krishnamurthy3, Yooli Light2, Shawn Martin1, Rajesh Munavalli3, Vijaya Natarajan3, Victor Olman10, Frank Olken4, Brian Palenik6, Byung Park3, Steven Plimpton1, Diana Roe2, Nagiza Samatova3, Arie Shoshani4, Michael Sinclair1, Alex Slepoy1, Shawn Stevens8, Chris Stork1, Charlie Strauss5, Zhengchang Su10, Edward Thomas1, Jerilyn A. Timlin1, Xiufeng Wan11, HongWei Wu10, Dong Xu11, Gong-Xin Yu3, Grover Yip8, Zhaoduo Zhang2, Erik Zuiderweg8 *Author to whom correspondence should be addressed (gsheffe%40sandia.gov) 1. Sandia National Laboratories, Albuquerque, NM 2. Sandia National Laboratories, Livermore, CA 3. Oak Ridge National Laboratory, Oak Ridge, TN 4. Lawrence Berkeley National Laboratory, Berkeley, CA 5. Los Alamos National Laboratory, Los Alamos, NM 6. University of California, San Diego 7. University of Illinois, Urbana/Champaign 8. University of Michigan, Ann Arbor 9. University of California, Riverside 10. University of Georgia, Athens 11. University of Missouri, Columbia 12. National Center for Genome Resources, Santa Fe, NM Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.