Publications

7 Results
Skip to search filters

Frequency Noise of Silicon Nitride Optomechanical Oscillators with Integrated Waveguides

Grine, Alejandro J.; Grine, Alejandro J.; Serkland, Darwin K.; Serkland, Darwin K.; Wood, Michael G.; Wood, Michael G.; Soudachanh, Amy L.; Soudachanh, Amy L.; Hollowell, Andrew E.; Hollowell, Andrew E.; Koch, Lawrence K.; Koch, Lawrence K.; Hains, Christopher H.; Hains, Christopher H.; Siddiqui, Aleem M.; Siddiqui, Aleem M.; Eichenfield, Matthew S.; Eichenfield, Matthew S.; Dagel, Daryl D.; Dagel, Daryl D.; Grossetete, Grant G.; Grossetete, Grant G.; Matins, Benjamin M.; Matins, Benjamin M.

Abstract not provided.

Measurement of Laser Weld Temperatures for 3D Model Input

Dagel, Daryl D.; Grossetete, Grant G.; Maccallum, Danny O.

Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

More Details

Four-color imaging pyrometer for mapping temperatures of laser-based metal processes

Proceedings of SPIE - The International Society for Optical Engineering

Dagel, Daryl D.; Grossetete, Grant G.; Maccallum, Danny O.; Korey, Scott P.

A 4-color imaging pyrometer was developed to investigate the thermal behavior of laser-based metal processes, specifically laser welding and laser additive manufacturing of stainless steel. The new instrument, coined a 2x pyrometer, consists of four, high-sensitivity silicon CMOS cameras configured as two independent 2-color pyrometers combined in a common hardware assembly. This coupling of pyrometers permitted low and high temperature regions to be targeted within the silicon response curve, thereby broadening the useable temperature range of the instrument. Also, by utilizing the high dynamic range features of the CMOS cameras, the response gap between the two wavelength bands can be bridged. Together these hardware and software enhancements are predicted to expand the real-time (60 fps) temperature response of the 2x pyrometer from 600 °C to 3500 °C. Initial results from a calibrated tungsten lamp confirm this increased response, thus making it attractive for measuring absolute temperatures of steel forming processes.

More Details

GaAs MOEMS Technology

Spahn, Olga B.; Fuller, Charles T.; Bauer, Thomas M.; Sullivan, Charles T.; Grossetete, Grant G.; Cich, Michael C.; Tigges, Chris P.; Reno, J.L.; Peake, Gregory M.; Klem, John F.

Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vital step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.

More Details
7 Results
7 Results