Characterizing Errors in Entangled-Atom Interferometry
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Large-scale quantum systems with controllable interactions are important for understanding complex phenomena in nature, and are the basis for advanced quantum technologies. Realizing a controllable platform for controlling, understanding, and ultimately harnessing the entanglement is an outstanding challenge in quantum science. This project demonstrated reconfigurable arrays of individually-trapped ultracold atoms, thus realizing a platform that could demonstrate large-scale quantum entanglement with the addition of strong inter-atomic interactions. Arrays of more than 50 trap sites were formed via digital holography and a high- numerical aperture imaging system that featured in-situ trap diagnostics and single-atom imaging resolution. We further discovered a new implementation of a controlled-phase gate that utilized coherent excitation to Rydberg states. This method will enable robust entanglement protocols in many-atom systems such as the one developed here. ACKNOWLEDGEMENTS We would like to acknowledge support from the Sandia National Laboratories LDRD program.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We demonstrate a controlled phase gate approach to entangling neutral atoms using a tunable, Rydberg-dressed interaction. Previous approaches utilize a “dipole blockade” or a “spin-flip blockade” and thereby lack arbitrary phase control, and are less extensible to simultaneous entangling operations in many-atom systems. We systematically study major error mechanisms that limit the fidelity of the entangling interaction and find the dominant error mechanism to be phase noise in the coherent control of the single spins. Our work charts a definitive path to high fidelity entanglement using Rydberg-state-mediated interactions in neutral atoms.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
We demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. This interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.
Physical Review A
We observe the nonlinearity of the Jaynes-Cummings (JC) ladder in the Autler-Townes spectroscopy of the hyperfine ground states for a Rydberg-dressed two-atom system. Here, the role of the two-level system in the JC model is played by the presence or absence of a collective Rydberg excitation, and the bosonic mode manifests as the number n of single-atom spin flips, symmetrically distributed between the atoms. We measure the normal-mode splitting and n nonlinearity as a function of detuning and Rabi frequency, thereby experimentally establishing the isomorphism with the JC model.
Abstract not provided.
Abstract not provided.