Publications

13 Results for kuhlman
Skip to search filters

Modeling coupled reactive flow processes in fractured crystalline rock

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Stein, Emily S.; Frederick, Jennifer M.; Hammond, Glenn E.; Kuhlman, Kristopher L.; Mariner, Paul M.; Sevougian, S.D.

Numerical simulation of a repository for heatgenerating nuclear waste in fractured crystalline rock requires a method for simulating coupled heat and fluid flow and reactive radionuclide transport in both porous media (bentonite buffer, surface sediments) and fractured rock (the repository host rock). Discrete fracture networks (DFNs), networks of two-dimensional planes distributed in a three-dimensional domain, are commonly used to simulate isothermal fluid flow and particle transport in fractures, but unless coupled to a continuum, are incapable of simulating heat conduction through the rock matrix, and therefore incapable of capturing the effects of thermally driven fluid fluxes or of coupling chemical processes to thermal processes. We present a method for mapping a stochastically generated DFN to a porous medium domain that allows representation of porous and fractured media in the same domain, captures the behavior of radionuclide transport in fractured rock, and allows simulation of coupled heat and fluid flow including heat conduction through the matrix of the fractured rock. We apply the method within Sandia's Geologic Disposal Safety Assessment (GDSA) framework to conduct a post-closure performance assessment (PA) of a generic repository for commercial spent nuclear fuel in crystalline rock. The three-dimensional, kilometer-scale model domain contains approximately 4.5 million grid cells; grid refinement captures the detail of 3, 360 individual waste packages in 42 disposal drifts. Coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel multiphase flow and reactive transport code. Simulations of multiple fracture realizations were run to 1 million years, and indicate that, because of the channeled nature of fracture flow, thermally-driven fluid fluxes associated with peak repository temperatures may be a primary means of radionuclide transport out of the saturated repository. The channeled nature of fracture flow gives rise to unique challenges in uncertainty and sensitivity quantification, as radionuclide concentrations at any given location outside the repository depend heavily on the distribution of fractures in the domain.

More Details

Evaluation of Used Fuel Disposition in Clay-Bearing Rock

Jove Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn E.; Kuhlman, Kristopher L.; Zheng, L.Z.; Rutqvist, J.R.; Kim, K.W.; Houseworth, J.H.; Caporuscio, F.A.C.; Cheshire, M.C.; Palaich, S.P.; Norskog, K.E.; Zavarin, M.Z.; Wolery, T.J.W.; Jerden, J.J.; Copple, J.M.C.; Cruse, T.C.; Ebert, W.E.; Jove Colon, Carlos F.

Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barrier system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive-transport and reaction path modeling. The focus of these investigations into the nature of sacrificial zones is to evaluate the chemical effects of heterogeneous chemical reactions at EBS interfaces. The difference in barrier material types and the extent of chemical reactions within these interfacial domains generates changes in mineral abundances. These mineralogical alterations also result in volume changes that, although small, could affect the interface bulk porosity. As in previous deliverables, this report is structured according to various national laboratory contributions describing R&D activities applicable to clay/shale/argillite media.

More Details

Evaluation of used fuel disposition in clay-bearing rock

Jove Colon, Carlos F.; Hammond, Glenn E.; Kuhlman, Kristopher L.; Zheng, L.Z.; Kim, K.W.; Xao, H.X.; Rutqvist, J.R.; Caporuscio, F.A.; Norskog, K.E.; Maner, J.M.; Palaich, S.P.; Cheshire, M.C.; Zavarin, M.Z.; Wolery, T.J.; Atkins-Duffin, C.A.; Jerden, J.J.; Copple, J.M.; Cruse, T.C.; Ebert, W.E.

The R&D program from the DOE Used Fuel Disposition Campaign (UFDC) has documented key advances in coupled Thermal-Hydrological-Mechanical-Chemical (THMC) modeling of clay to simulate its complex dynamic behavior in response to thermal and hydrochemical feedbacks. These efforts have been harnessed to assess the isolation performance of heat-generating nuclear waste in a deep geological repository in clay/shale/argillaceous rock formations. This report describes the ongoing disposal R&D efforts on the advancement and refinement of coupled THMC process models, hydrothermal experiments on barrier clay interactions, used fuel and canister material degradation, thermodynamic database development, and reactive transport modeling of the near-field under non-isothermal conditions. These play an important role to the evaluation of sacrificial zones as part of the EBS exposure to thermally-driven chemical and transport processes. Thermal inducement of chemical interactions at EBS domains enhances mineral dissolution/precipitation but also generates mineralogical changes that result in mineral H2O uptake/removal (hydration/dehydration reactions). These processes can result in volume changes that can affect the interface / bulk phase porosities and the mechanical (stress) state of the bentonite barrier. Characterization studies on bentonite barrier samples from the FEBEX-DP international activity have provided important insight on clay barrier microstructures (e.g., microcracks) and interactions at EBS interfaces. Enhancements to the used fuel degradation model outlines the need to include the effects of canister corrosion due the strong influence of H2 generation on the source term.

More Details
13 Results for kuhlman
13 Results for kuhlman