Publications

144 Results
Skip to search filters

Progress in Deep Geologic Disposal Safety Assessment in the U.S. since 2010

Mariner, Paul M.; Connolly, Laura A.; Cunningham, Leigh C.; Debusschere, Bert D.; Dobson, David C.; Frederick, Jennifer M.; Hammond, Glenn E.; Jordan, Spencer H.; LaForce, Tara; Nole, Michael A.; Park, Heeho D.; Perry, Frank V.; Rogers, Ralph D.; Seidl, Daniel T.; Sevougian, Stephen D.; Stein, Emily S.; Swift, Peter N.; Swiler, Laura P.; Vo, Jonathan V.; Wallace, Michael G.

Abstract not provided.

Using Bayesian Networks for Sensitivity Analysis of Complex Biogeochemical Models

Water Resources Research

Dai, Heng; Chen, Xingyuan; Ye, Ming; Song, Xuehang; Hammond, Glenn E.; Hu, Bill; Zachara, John M.

Sensitivity analysis is a vital tool in numerical modeling to identify important parameters and processes that contribute to the overall uncertainty in model outputs. We developed a new sensitivity analysis method to quantify the relative importance of uncertain model processes that contain multiple uncertain parameters. The method is based on the concepts of Bayesian networks (BNs) to account for complex hierarchical uncertainty structure of a model system. We derived a new set of sensitivity indices using the methodology of variance-based global sensitivity analysis with the Bayesian inference. The framework is capable of representing the detailed uncertainty information of a complex model system using BNs and affords flexible grouping of different uncertain inputs given their characteristics and dependency structures. We have implemented the method on a real-world biogeochemical model at the groundwater-surface water interface within the Hanford Site's 300 Area. The uncertainty sources of the model were first grouped into forcing scenario and three different processes based on our understanding of the complex system. The sensitivity analysis results indicate that both the reactive transport and groundwater flow processes are important sources of uncertainty for carbon-consumption predictions. Within the groundwater flow process, the structure of geological formations is more important than the permeability heterogeneity within a given geological formation. Our new sensitivity analysis framework based on BNs offers substantial flexibility for investigating the importance of combinations of interacting uncertainty sources in a hierarchical order, and it is expected to be applicable to a wide range of multiphysics models for complex systems.

More Details

Re-evaluation of U.S. DOE R&D efforts for generic deep geologic repositories - Roadmap update

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Sevougian, S.D.; Hammond, Glenn E.; Mariner, Paul M.; MacKinnon, R.J.; Swift, Peter N.; Rogers, R.D.; Dobson, D.C.; Tynan, M.C.

R&D addressing the disposal of commercial spent nuclear fuel in the U.S. is currently generic (i.e., “non-site-specific”) in scope. However, to prepare for the eventuality of a repository siting process, the former Used Fuel Disposition (UFD) Campaign of the Nuclear Energy (NE) Office of the U.S. DOE formulated an R&D Roadmap in 2012 outlining generic R&D activities and their priorities appropriate for developing safety cases and associated performance assessment (PA) models for deep geologic repositories in several potential host-rock environments in the contiguous United States. This 2012 UFD Roadmap identified the importance of re-evaluating priorities in future years as knowledge is gained from the DOE's ongoing R&D activities. Since 2012, significant knowledge has been gained from these activities through R&D in the U.S. and via international collaborations, especially with countries that operate underground research laboratories (URLs). The 2019 R&D Roadmap Update, introduced here, summarizes the progress of ongoing R&D activities, re-assesses R&D priorities, and identifies new activities of high priority, such as R&D on disposal of DPCs (dual purpose canisters), which now contain a significant fraction of the Nation's spent fuel activity.

More Details

Benchmarking and QA testing in PFLOTRAN

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

LaForce, Tara; Frederick, Jennifer M.; Hammond, Glenn E.; Stein, Emily S.; Mariner, Paul E.

PFLOTRAN is well-established in single-phase reactive transport problems, and current research is expanding its visibility and capability in two-phase subsurface problems. A critical part of the development of simulation software is quality assurance (QA). The purpose of the present work is QA testing to verify the correct implementation and accuracy of two-phase flow models in PFLOTRAN. An important early step in QA is to verify the code against exact solutions from the literature. In this work a series of QA tests on models that have known analytical solutions are conducted using PFLOTRAN. In each case the simulated saturation profile is rigorously shown to converge to the exact analytical solution. These results verify the accuracy of PFLOTRAN for use in a wide variety of two-phase modelling problems with a high degree of nonlinearity in the interaction between phase behavior and fluid flow.

More Details

Advances in Geologic Disposal Safety Assessment and an Unsaturated Alluvium Reference Case

Mariner, Paul M.; Stein, Emily S.; Cunningham, Leigh C.; Frederick, Jennifer M.; Hammond, Glenn E.; Lowry, Thomas S.; Basurto, Eduardo B.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Depat ment of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes specific GDSA activities in fiscal year 2018 (FY 2018) toward the development of GDSA Framework, an enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. GDSA Framework employs the PFLOTRAN thermal-hydrologic-chemical multiphysics code (Hammond et al. 2011a; Lichtner and Hammond 2012) and the Dakota uncertainty sampling and propagation code (Adams et al. 2012; Adams et al. 2013). Each code is designed for massivelyparallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

More Details

Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream-aquifer-land interactions (CP v1.0)

Geoscientific Model Development

Bisht, Gautam; Huang, Maoyi; Zhou, Tian; Chen, Xingyuan; Dai, Heng; Hammond, Glenn E.; Riley, William J.; Downs, Janelle L.; Liu, Ying; Zachara, John M.

A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater-river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater-river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater-river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.

More Details

Advances in Geologic Disposal System Modeling and Shale Reference Cases

Mariner, Paul M.; Stein, Emily S.; Frederick, Jennifer M.; Sevougian, Stephen D.; Hammond, Glenn E.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).

More Details

PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data

Computers and Geosciences

Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan

Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev.

More Details

Development of a waste form process model in PFLOTRAN

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Frederick, Jennifer M.; Hammond, Glenn E.; Mariner, Paul M.; Stein, Emily S.; Sevougian, S.D.

An important feature required in all geological disposal system modeling is proper representation of waste package degradation and waste form dissolution. These processes are often treated as batch operations, meaning they are zero-dimensional. However, waste package canister degradation or waste form dissolution are affected by near-field conditions, and thus they must be coupled to the computational domain through the exchange of information on local conditions. Accurate waste package and waste form degradation behavior is essential because processes occurring at the batch level also affect far field conditions through heat and mass transport by advection or diffusion. Presented here is the development and performance of the Waste Form Process Model, an integrated module for waste package canister degradation and waste form dissolution developed by Sandia National Laboratories within PFLOTRAN. PFLOTRAN is an open source, massively parallel subsurface simulator for multiphase, multicomponent, and multiscale reactive flow and transport processes in porous media. PFLOTRAN is used to model geologic disposal systems for the Spent Fuel and Waste Science and Technology (SFWST) Campaign under the Spent Fuel and Waste Disposition Program of the U.S. Department of Energy (DOE) Office of Nuclear Energy.

More Details

Modeling coupled reactive flow processes in fractured crystalline rock

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Stein, Emily S.; Frederick, Jennifer M.; Hammond, Glenn E.; Kuhlman, Kristopher L.; Mariner, Paul M.; Sevougian, S.D.

Numerical simulation of a repository for heatgenerating nuclear waste in fractured crystalline rock requires a method for simulating coupled heat and fluid flow and reactive radionuclide transport in both porous media (bentonite buffer, surface sediments) and fractured rock (the repository host rock). Discrete fracture networks (DFNs), networks of two-dimensional planes distributed in a three-dimensional domain, are commonly used to simulate isothermal fluid flow and particle transport in fractures, but unless coupled to a continuum, are incapable of simulating heat conduction through the rock matrix, and therefore incapable of capturing the effects of thermally driven fluid fluxes or of coupling chemical processes to thermal processes. We present a method for mapping a stochastically generated DFN to a porous medium domain that allows representation of porous and fractured media in the same domain, captures the behavior of radionuclide transport in fractured rock, and allows simulation of coupled heat and fluid flow including heat conduction through the matrix of the fractured rock. We apply the method within Sandia's Geologic Disposal Safety Assessment (GDSA) framework to conduct a post-closure performance assessment (PA) of a generic repository for commercial spent nuclear fuel in crystalline rock. The three-dimensional, kilometer-scale model domain contains approximately 4.5 million grid cells; grid refinement captures the detail of 3, 360 individual waste packages in 42 disposal drifts. Coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel multiphase flow and reactive transport code. Simulations of multiple fracture realizations were run to 1 million years, and indicate that, because of the channeled nature of fracture flow, thermally-driven fluid fluxes associated with peak repository temperatures may be a primary means of radionuclide transport out of the saturated repository. The channeled nature of fracture flow gives rise to unique challenges in uncertainty and sensitivity quantification, as radionuclide concentrations at any given location outside the repository depend heavily on the distribution of fractures in the domain.

More Details

xSDK foundations: Toward an extreme-scale scientific software development kit

Supercomputing Frontiers and Innovations

Bartlett, Roscoe B.; Demeshko, Irina; Gamblin, Todd; Hammond, Glenn E.; Heroux, Michael A.; Johnson, Jeffrey; Klinvex, Alicia M.; Li, Xiaoye; McInnes, Lois C.; Moulton, J.D.; Osei-Kuffuor, Daniel; Sarich, Jason; Smith, Barry; Willenbring, James M.; Yang, Ulrike M.

Extreme-scale computational science increasingly demands multiscale and multiphysics formulations. Combining software developed by independent groups is imperative: no single team has resources for all predictive science and decision support capabilities. Scientific libraries provide high-quality, reusable software components for constructing applications with improved robustness and portability. However, without coordination, many libraries cannot be easily composed. Namespace collisions, inconsistent arguments, lack of third-party software versioning, and additional difficulties make composition costly. The Extreme-scale Scientific Software Development Kit (xSDK) defines community policies to improve code quality and compatibility across independently developed packages (hypre, PETSc, SuperLU, Trilinos, and Alquimia) and provides a foundation for addressing broader issues in software interoperability, performance portability, and sustainability. The xSDK provides turnkey installation of member software and seamless combination of aggregate capabilities, and it marks first steps toward extreme-scale scientific software ecosystems from which future applications can be composed rapidly with assured quality and scalability.

More Details

Implications of Grain-Scale Mineralogical Heterogeneity for Radionuclide Transport in Fractured Media

Transport in Porous Media

Trinchero, Paolo; Molinero, Jorge; Deissmann, Guido; Svensson, Urban; Gylling, Björn; Ebrahimi, Hedieh; Hammond, Glenn E.; Bosbach, Dirk; Puigdomenech, Ignasi

The geological disposal of nuclear waste is based on the multi-barrier concept, comprising various engineered and natural barriers, to confine the radioactive waste and isolate it from the biosphere. Some of the planned repositories for high-level nuclear waste will be hosted in fractured crystalline rock formations. The potential of these formations to act as natural transport barriers is related to two coupled processes: diffusion into the rock matrix and sorption onto the mineral surfaces available in the rock matrix. Different in situ and laboratory experiments have pointed out the ubiquitous heterogeneous nature of the rock matrix: mineral surfaces and pore space are distributed in complex microstructures and their distribution is far from being homogeneous (as typically assumed by Darcy-scale coarse reactive transport models). In this work, we use a synthetically generated fracture–matrix system to assess the implications of grain-scale physical and mineralogical heterogeneity on cesium transport and retention. The resulting grain-scale reactive transport model is solved using high-performance computing technologies, and the results are compared with those derived from two alternative models, denoted as upscaled models, where mineral abundance is averaged over the matrix volume. In the grain-scale model, the penetration of cesium into the matrix is faster and the penetration front is uneven and finger-shaped. The analysis of the cesium breakthrough curves computed at two different points in the fracture shows that the upscaled models provide later first-arrival time estimates compared to the grain-scale model. The breakthrough curves computed with the three models converge at late times. These results suggest that spatially averaged upscaled parameters of sorption site distribution can be used to predict the late-time behavior of breakthrough curves but could be inadequate to simulate the early behavior.

More Details

Status of Progress Made Toward Safety Analysis and Technical Site Evaluations for DOE Managed HLW and SNF

Sevougian, Stephen D.; Stein, Emily S.; Gross, Michael B.; Hammond, Glenn E.; Frederick, Jennifer M.; Mariner, Paul M.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories). This report describes specific activities in FY 2016 associated with the development of a Defense Waste Repository (DWR)a for the permanent disposal of a portion of the HLW and SNF derived from national defense and research and development (R&D) activities of the DOE.

More Details

Advances in Geologic Disposal System Modeling and Application to Crystalline Rock

Mariner, Paul M.; Stein, Emily S.; Frederick, Jennifer M.; Sevougian, Stephen D.; Hammond, Glenn E.

The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

More Details

Evaluation of used fuel disposition in clay-bearing rock

Jove Colon, Carlos F.; Hammond, Glenn E.; Kuhlman, Kristopher L.; Zheng, L.Z.; Kim, K.W.; Xao, H.X.; Rutqvist, J.R.; Caporuscio, F.A.; Norskog, K.E.; Maner, J.M.; Palaich, S.P.; Cheshire, M.C.; Zavarin, M.Z.; Wolery, T.J.; Atkins-Duffin, C.A.; Jerden, J.J.; Copple, J.M.; Cruse, T.C.; Ebert, W.E.

The R&D program from the DOE Used Fuel Disposition Campaign (UFDC) has documented key advances in coupled Thermal-Hydrological-Mechanical-Chemical (THMC) modeling of clay to simulate its complex dynamic behavior in response to thermal and hydrochemical feedbacks. These efforts have been harnessed to assess the isolation performance of heat-generating nuclear waste in a deep geological repository in clay/shale/argillaceous rock formations. This report describes the ongoing disposal R&D efforts on the advancement and refinement of coupled THMC process models, hydrothermal experiments on barrier clay interactions, used fuel and canister material degradation, thermodynamic database development, and reactive transport modeling of the near-field under non-isothermal conditions. These play an important role to the evaluation of sacrificial zones as part of the EBS exposure to thermally-driven chemical and transport processes. Thermal inducement of chemical interactions at EBS domains enhances mineral dissolution/precipitation but also generates mineralogical changes that result in mineral H2O uptake/removal (hydration/dehydration reactions). These processes can result in volume changes that can affect the interface / bulk phase porosities and the mechanical (stress) state of the bentonite barrier. Characterization studies on bentonite barrier samples from the FEBEX-DP international activity have provided important insight on clay barrier microstructures (e.g., microcracks) and interactions at EBS interfaces. Enhancements to the used fuel degradation model outlines the need to include the effects of canister corrosion due the strong influence of H2 generation on the source term.

More Details

River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone

Water Resources Research

Zachara, John M.; Chen, Xingyuan; Murray, Chris; Hammond, Glenn E.

A well-field within a uranium (U) plume in the groundwater-surface water transition zone was monitored for a 3 year period for water table elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal and well-to-well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common behaviors resulting from the intrusion dynamics of river water and the location of source terms. Hot-spots in Uaq varied in location with increasing water table elevation through the combined effects of advection and source term location. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized Uaq was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While Uaq time-series concentration trends varied significantly from year-to-year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of river water intrusion.

More Details

Application of Generic Disposal System Models

Mariner, Paul M.; Hammond, Glenn E.; Sevougian, Stephen D.; Stein, Emily S.

This report describes specific GDSA activities in fiscal year 2015 (FY2015) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code (Hammond et al., 2011) and the Dakota uncertainty sampling and propagation code (Adams et al., 2013). Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through the engineered barriers and natural geologic barriers to a well location in an overlying or underlying aquifer. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

More Details

Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

Hadgu, Teklu H.; Stein, Emily S.; Hardin, Ernest H.; Freeze, Geoffrey A.; Hammond, Glenn E.

Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predict that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.

More Details

Evaluation of Used Fuel Disposition in Clay-Bearing Rock

Jove Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn E.; Kuhlman, Kristopher L.; Zheng, L.Z.; Rutqvist, J.R.; Kim, K.W.; Houseworth, J.H.; Caporuscio, F.A.C.; Cheshire, M.C.; Palaich, S.P.; Norskog, K.E.; Zavarin, M.Z.; Wolery, T.J.W.; Jerden, J.J.; Copple, J.M.C.; Cruse, T.C.; Ebert, W.E.; Jove Colon, Carlos F.

Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barrier system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive-transport and reaction path modeling. The focus of these investigations into the nature of sacrificial zones is to evaluate the chemical effects of heterogeneous chemical reactions at EBS interfaces. The difference in barrier material types and the extent of chemical reactions within these interfacial domains generates changes in mineral abundances. These mineralogical alterations also result in volume changes that, although small, could affect the interface bulk porosity. As in previous deliverables, this report is structured according to various national laboratory contributions describing R&D activities applicable to clay/shale/argillite media.

More Details

Four-dimensional electrical conductivity monitoring of stage-driven river water intrusion: Accounting for water table effects using a transient mesh boundary and conditional inversion constraints

Water Resources Research

Johnson, Tim; Versteeg, Roelof; Thomle, Jon; Hammond, Glenn E.; Chen, Xingyuan; Zachara, John

This paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Second, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surface water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.

More Details

Delineating Hydrofacies Spatial Distribution by Integrating Ensemble Data Assimilation and Indicator Geostatistics

Sandia journal manuscript; Not yet accepted for publication

Song, Xuehang S.; Chen, Xingyuan C.; Ye, Ming Y.; Dai, Zhenxue D.; Hammond, Glenn E.

This study develops a new framework of facies-based data assimilation for characterizing spatial distribution of hydrofacies and estimating their associated hydraulic properties. This framework couples ensemble data assimilation with transition probability-based geostatistical model via a parameterization based on a level set function. The nature of ensemble data assimilation makes the framework efficient and flexible to be integrated with various types of observation data. The transition probability-based geostatistical model keeps the updated hydrofacies distributions under geological constrains. The framework is illustrated by using a two-dimensional synthetic study that estimates hydrofacies spatial distribution and permeability in each hydrofacies from transient head data. Our results show that the proposed framework can characterize hydrofacies distribution and associated permeability with adequate accuracy even with limited direct measurements of hydrofacies. Our study provides a promising starting point for hydrofacies delineation in complex real problems.

More Details

High Performance Simulation of Environmental Tracers in Heterogeneous Domains

Groundwater

Gardner, William P.; Hammond, Glenn E.; Lichtner, Peter

In this study, we use PFLOTRAN, a highly scalable, parallel, flow, and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, and the mean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2D and 3D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer to the tracer age limit. Age distributions in 3D domains differ significantly from 2D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3D systems.

More Details

Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts

Sevougian, Stephen D.; Freeze, Geoffrey A.; Gardner, William P.; Hammond, Glenn E.; Mariner, Paul M.

directly, rather than through simplified abstractions. It also a llows for complex representations of the source term, e.g., the explicit representation of many individual waste packages (i.e., meter - scale detail of an entire waste emplacement drift). This report fulfills the Generic Disposal System Analysis Work Packa ge Level 3 Milestone - Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts (M 3 FT - 1 4 SN08080 3 2 ).

More Details

Physical Modeling of Scaled Water Distribution System Networks

O'Hern, Timothy J.; Hammond, Glenn E.; Orear, Leslie O.; van Bloemen Waanders, Bart G.

Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

More Details
144 Results
144 Results