Publications

3 Results
Skip to search filters

Preliminary study on hydrogeology in tectonically active areas

Arnold, Bill W.; Lappin, Allen R.; Gettemy, Glen L.; Meier, Diane K.; Lee, Moo Y.; Jensen, Richard P.

This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

More Details

Geomechanics of penetration :laboratory analog experiments using a modified split hopkinson pressure bar/impact testing procedure

Gettemy, Glen L.; Holcomb, David J.; Bronowski, David R.

This research continues previous efforts to re-focus the question of penetrability away from the behavior of the penetrator itself and toward understanding the dynamic, possibly strain-rate dependent, behavior of the affected materials. A modified split Hopkinson pressure bar technique is prototyped to determine the value of reproducing the stress states, and mechanical responses, of geomaterials observed in actual penetrator tests within a laboratory setting. Conceptually, this technique simulates the passage of the penetrator surface past any fixed point in the penetrator trajectory by allowing for a controlled stress-time function to be transmitted into a sample, thereby mimicking the 1D radial projection inherent to analyses of the cavity expansion problem. Test results from a suite of weak (unconfined compressive strength, or UCS, of 22 MPa) concrete samples, with incident strain rates of 100-250 s{sup -1}, show that the complex mechanical response includes both plastic and anelastic wave propagation, and is critically dependent on incident particle velocity and saturation state. For instance, examination of the transmitted stress-time data, and post-test volumetric measurements of pulverized material, provide independent estimates of the plasticized zone length (1-2 cm) formed for incident particle velocity of {approx}16.7 m/s. The results also shed light on the elastic or energy propagation property changes that occur in the concrete. For example, the pre- and post-test zero-stress elastic wave propagation velocities show that the Young's modulus drops from {approx}19 GPa to <8 GPa for material within the first centimeter from the plastic transition front, while the Young's modulus of the dynamically confined, axially-stressed (in 6-18 MPa range) plasticized material drops to 0.5-0.6 GPa. The data also suggest that the critical particle velocity for formation of a plastic zone in the weak concrete is 13-15 m/s, with increased saturation tending to increase the critical particle velocity limit. Overall, the data produced from these experiments suggests that further pursuit of this approach is warranted for penetration research but also as a potential new method for dynamic testing of materials.

More Details

Geomechanics of penetration : experimental and computational approaches : final report for LDRD project 38718

Holcomb, David J.; Fossum, Arlo F.; Gettemy, Glen L.; Hardy, Robert D.; Bronowski, David R.; Rivas, Raul R.; Preece, Dale S.

The purpose of the present work is to increase our understanding of which properties of geomaterials most influence the penetration process with a goal of improving our predictive ability. Two primary approaches were followed: development of a realistic, constitutive model for geomaterials and designing an experimental approach to study penetration from the target's point of view. A realistic constitutive model, with parameters based on measurable properties, can be used for sensitivity analysis to determine the properties that are most important in influencing the penetration process. An immense literature exists that is devoted to the problem of predicting penetration into geomaterials or similar man-made materials such as concrete. Various formulations have been developed that use an analytic or more commonly, numerical, solution for the spherical or cylindrical cavity expansion as a sort of Green's function to establish the forces acting on a penetrator. This approach has had considerable success in modeling the behavior of penetrators, both as to path and depth of penetration. However the approach is not well adapted to the problem of understanding what is happening to the material being penetrated. Without a picture of the stress and strain state imposed on the highly deformed target material, it is not easy to determine what properties of the target are important in influencing the penetration process. We developed an experimental arrangement that allows greater control of the deformation than is possible in actual penetrator tests, yet approximates the deformation processes imposed by a penetrator. Using explosive line charges placed in a central borehole, we loaded cylindrical specimens in a manner equivalent to an increment of penetration, allowing the measurement of the associated strains and accelerations and the retrieval of specimens from the more-or-less intact cylinder. Results show clearly that the deformation zone is highly concentrated near the borehole, with almost no damage occurring beyond 1/2 a borehole diameter. This implies penetration is not strongly influenced by anything but the material within a diameter or so of the penetration. For penetrator tests, target size should not matter strongly once target diameters exceed some small multiple of the penetrator diameter. Penetration into jointed rock should not be much affected unless a discontinuity is within a similar range. Accelerations measured at several points along a radius from the borehole are consistent with highly-concentrated damage and energy absorption; At the borehole wall, accelerations were an order of magnitude higher than at 1/2 a diameter, but at the outer surface, 8 diameters away, accelerations were as expected for propagation through an elastic medium. Accelerations measured at the outer surface of the cylinders increased significantly with cure time for the concrete. As strength increased, less damage was observed near the explosively-driven borehole wall consistent with the lower energy absorption expected and observed for stronger concrete. As it is the energy absorbing properties of a target that ultimately stop a penetrator, we believe this may point the way to a more readily determined equivalent of the S number.

More Details
3 Results
3 Results