Publications

2 Results
Skip to search filters

Synthetic Microbial Consortium for Biological Breakdown and Conversion of Lignin

Sale, Kenneth L.; Rodriguez Ruiz, Jose A.; Light, Yooli K.; Tran-Gyamfi, Mary B.; Hirakawa, Matthew H.; George, Anthe G.; Geiselman, Gina M.; Martinez, Salvador M.

The plant polymer lignin is the most abundant renewable source of aromatics on the planet and conversion of it to valuable fuels and chemicals is critical to the economic viability of a lignocellulosic biofuels industry and to meeting the DOE’s 2022 goal of $\$2.50$/gallon mean biofuel selling price. Presently, there is no efficient way of converting lignin into valuable commodities. Current biological approaches require mixtures of expensive ligninolytic enzymes and engineered microbes. This project was aimed at circumventing these problems by discovering commensal relationships among fungi and bacteria involved in biological lignin utilization and using this knowledge to engineer microbial communities capable of converting lignin into renewable fuels and chemicals. Essentially, we aimed to learn from, mimic and improve on nature. We discovered fungi that synergistically work together to degrade lignin, engineered fungal systems to increase expression of the required enzymes and engineered organisms to produce products such as biodegradable plastics precursors.

More Details

Exploiting nonionic surfactants to enhance fatty alcohol production in Rhodosporidium toruloides

Biotechnology and Bioengineering

Liu, Di; Geiselman, Gina M.; Coradetti, Samuel; Cheng, Ya F.; Kirby, James; Prahl, Jan P.; Jacobson, Oslo; Sundstrom, Eric R.; Tanjore, Deepti; Skerker, Jeffrey M.; Gladden, John M.

Fatty alcohols (FOHs) are important feedstocks in the chemical industry to produce detergents, cosmetics, and lubricants. Microbial production of FOHs has become an attractive alternative to production in plants and animals due to growing energy demands and environmental concerns. However, inhibition of cell growth caused by intracellular FOH accumulation is one major issue that limits FOH titers in microbial hosts. In addition, identification of FOH-specific exporters remains a challenge and previous studies towards this end are limited. To alleviate the toxicity issue, we exploited nonionic surfactants to promote the export of FOHs in Rhodosporidium toruloides, an oleaginous yeast that is considered an attractive next-generation host for the production of fatty acid-derived chemicals. Our results showed FOH export efficiency was dramatically improved and the growth inhibition was alleviated in the presence of small amounts of tergitol and other surfactants. As a result, FOH titers increase by 4.3-fold at bench scale to 352.6 mg/L. With further process optimization in a 2-L bioreactor, the titer was further increased to 1.6 g/L. The method we show here can potentially be applied to other microbial hosts and may facilitate the commercialization of microbial FOH production.

More Details
2 Results
2 Results