In-situ Observations and Measurements of Thread Failure in Thin Walled Aluminum Alloy Joints
Abstract not provided.
Abstract not provided.
Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictions had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Recent work at Sandia National Laboratories has focused on preparing strong predictive models for the simulation of ductile failure in metals. The focus of this talk is on the development of engineering-ready models that use a phenomenological approach to represent the ductile fracture processes. As such, an empirical tearing parameter that accounts for mean stress effects along the crack front is presented. A critical value of the tearing parameter is used in finite element calculations as the criterion for crack growth. Regularization is achieved with three different methods and the results are compared. In the first method, upon reaching the critical tearing, the stress within a solid element is decayed by uniformly shrinking the yield surface over a user specified amount of strain. This yields mesh-size dependent results. As a second method for regularization, cohesive surface elements are inserted using an automatic remeshing technique. In the third method, strain-localization elements are inserted with the automated remeshing.
Many problems of practical importance involve ductile materials that undergo very large strains, in many cases to the point of failure. Examples include structures subjected to impact or blast loads, energy absorbing devices subjected to significant crushing, cold-forming manufacturing processes and others. One of the most fundamental pieces of data that is required in the analysis of this kind of problems is the fit of the uniaxial stress-strain curve of the material. A series of experiments where mild steel plates were punctured with a conical indenter provided a motivation to characterize the true stress-strain curve until the point of failure of this material, which displayed significant ductility. The hardening curve was obtained using a finite element model of the tensile specimens that included a geometric imperfection in the form of a small reduction in the specimen width to initiate necking. An automated procedure iteratively adjusted the true stress-strain curve fit used as input until the predicted engineering stress-strain curve matched experimental measurements. Whereas the fitting is relatively trivial prior to reaching the ultimate engineering stress, the fit of the softening part of the engineering stress-stain curve is highly dependent on the finite element parameters such as element formulation and initial geometry. Results by two hexahedral elements are compared. The first is a standard, under-integrated, uniform-strain element with hourglass control. The second is a modified selectively-reduced-integration element. In addition, the effects of element size, aspect ratio and hourglass control characteristics are investigated. The effect of adaptively refining the mesh based on the aspect ratio of the deformed elements is also considered. The results of the study indicate that for the plate puncture problem, characterizing the material with the same element formulation and size as used in the plate models is beneficial. On the other hand, using different element formulations, sizes or initial aspect ratios can lead to unreliable results.
The increased demand for Liquefied Natural Gas (LNG) as a fuel source in the U.S. has prompted a study to improve our capability to predict cascading damage to LNG tankers from cryogenic spills and subsequent fire. To support this large modeling and simulation effort, a suite of experiments were conducted on two tanker steels, ABS Grade A steel and ABS Grade EH steel. A thorough and complete understanding of the mechanical behavior of the tanker steels was developed that was heretofore unavailable for the span of temperatures of interest encompassing cryogenic to fire temperatures. This was accomplished by conducting several types of experiments, including tension, notched tension and Charpy impact tests at fourteen temperatures over the range of -191 C to 800 C. Several custom fixtures and special techniques were developed for testing at the various temperatures. The experimental techniques developed and the resulting data will be presented, along with a complete description of the material behavior over the temperature span.
Instrumented, fully coupled thermal-mechanical experiments were conducted to provide validation data for finite element simulations of failure in pressurized, high temperature systems. The design and implementation of the experimental methodology is described in another paper of this conference. Experimental coupling was accomplished on tubular 304L stainless steel specimens by mechanical loading imparted by internal pressurization and thermal loading by side radiant heating. Experimental parameters, including temperature and pressurization ramp rates, maximum temperature and pressure, phasing of the thermal and mechanical loading and specimen geometry details were studied. Experiments were conducted to increasing degrees of deformation, up to and including failure. Mechanical characterization experiments of the 304L stainless steel tube material was also completed for development of a thermal elastic-plastic material constitutive model used in the finite element simulations of the validation experiments. The material was characterized in tension at a strain rate of 0.001/s from room temperature to 800 C. The tensile behavior of the tube material was found to differ substantially from 304L bar stock material, with the plasticity characteristics and strain to failure differing at every test temperature.
Coupled thermal-mechanical experiments with well-defined, controlled boundary conditions were designed through an iterative process involving a team of experimentalists, material modelers and computational analysts. First the basic experimental premise was selected: an axisymmetric tubular specimen mechanically loaded by internal pressurization and thermally loaded asymmetrically by side radiant heating. Then several integrated experimental-analytical steps were taken to determine the experimental details. The boundary conditions were mostly thermally driven and were chosen so they could be modeled accurately; the experimental fixtures were designed to ensure that the boundary conditions were met. Preliminary, uncoupled analyses were used to size the specimen diameter, height and thickness with experimental consideration of maximum pressure loads and fixture design. Iterations of analyses and experiments were used to efficiently determine heating parameters including lamp and heating shroud design, set off distance between the lamps and shroud and between the shroud and specimen, obtainable ramp rates, and the number and spatial placement of thermocouples. The design process and the experimental implementation of the final coupled thermomechanical failure experiment design will be presented.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Engineering Sciences Center at Sandia National Laboratories provided an independent peer review of the structural analysis supporting the National Transportation Safety Board investigation of the August 1, 2007 collapse of the I-35W Bridge in Minneapolis. The purpose of the review was to provide an impartial critique of the analysis approach, assumptions, solution techniques, and conclusions. Subsequent to reviewing numerous supporting documents, a SNL team of staff and management visited NTSB to participate in analysis briefings, discussions with investigators, and examination of critical elements of the bridge wreckage. This report summarizes the opinion of the review team that the NTSB analysis effort was appropriate and provides compelling supporting evidence for the NTSB probable cause conclusion.
Abstract not provided.
While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.
Abstract not provided.
Proposed for publication in Mechanics of Materials.
Abstract not provided.
The purpose of microstructural control is to optimize materials properties. To that end, they have developed sophisticated and successful computational models of both microstructural evolution and mechanical response. However, coupling these models to quantitatively predict the properties of a given microstructure poses a challenge. This problem arises because most continuum response models, such as finite element, finite volume, or material point methods, do not incorporate a real length scale. Thus, two self-similar polycrystals have identical mechanical properties regardless of grain size, in conflict with theory and observations. In this project, they took a tiered risk approach to incorporate microstructure and its resultant length scales in mechanical response simulations. Techniques considered include low-risk, low-benefit methods, as well as higher-payoff, higher-risk methods. Methods studied include a constitutive response model with a local length-scale parameter, a power-law hardening rate gradient near grain boundaries, a local Voce hardening law, and strain-gradient polycrystal plasticity. These techniques were validated on a variety of systems for which theoretical analyses and/or experimental data exist. The results may be used to generate improved constitutive models that explicitly depend upon microstructure and to provide insight into microstructural deformation and failure processes. Furthermore, because mechanical state drives microstructural evolution, a strain-enhanced grain growth model was coupled with the mechanical response simulations. The coupled model predicts both properties as a function of microstructure and microstructural development as a function of processing conditions.
FAILPROB is a computer program that applies the Weibull statistics characteristic of brittle failure of a material along with the stress field resulting from a finite element analysis to determine the probability of failure of a component. FAILPROB uses the statistical techniques for fast fracture prediction (but not the coding) from the N.A.S.A. - CARES/life ceramic reliability package. FAILPROB provides the analyst at Sandia with a more convenient tool than CARES/life because it is designed to behave in the tradition of structural analysis post-processing software such as ALGEBRA, in which the standard finite element database format EXODUS II is both read and written. This maintains compatibility with the entire SEACAS suite of post-processing software. A new technique to deal with the high local stresses computed for structures with singularities such as glass-to-metal seals and ceramic-to-metal braze joints is proposed and implemented. This technique provides failure probability computation that is insensitive to the finite element mesh employed in the underlying stress analysis. Included in this report are a brief discussion of the computational algorithms employed, user instructions, and example problems that both demonstrate the operation of FAILPROB and provide a starting point for verification and validation.
Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.