Publications

19 Results
Skip to search filters

InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalorganic chemical vapor deposition

Proposed for publication in the Journal of Crystal Growth.

Koleske, Daniel K.; Crawford, Mary H.; Thaler, Gerald T.; Russell, Michael J.

We report growth of InGaN/GaN multi-quantum well (MQW) and LED structures on a novel composite substrate designed to eliminate the coefficient of thermal expansion (CTE) mismatch problems which impact GaN growth on bulk sapphire. To form the composite substrate, a thin sapphire layer is wafer-bonded to a polycrystalline aluminum nitride (P-AlN) support substrate. The sapphire layer provides the epitaxial template for the growth; however, the thermo-mechanical properties of the composite substrate are determined by the P-AlN. Using these substrates, thermal stresses associated with temperature changes during growth should be reduced an order of magnitude compared to films grown on bulk sapphire, based on published CTE data. In order to test the suitability of the substrates for GaN LED growth, test structures were grown by metalorganic chemical vapor deposition (MOCVD) using standard process conditions for GaN growth on sapphire. Bulk sapphire substrates were included as control samples in all growth runs. In situ reflectance monitoring was used to compare the growth dynamics for the different substrates. The material quality of the films as judged by X-ray diffraction (XRD), photoluminescence and transmission electron microscopy (TEM) was similar for the composite substrate and the sapphire control samples. Electroluminescence was obtained from the LED structure grown on a P-AlN composite substrate, with a similar peak wavelength and peak width to the control samples. XRD and Raman spectroscopy results confirm that the residual strain in GaN films grown on the composite substrates is dramatically reduced compared to growth on bulk sapphire substrates.

More Details

Lithographically defined carbon growth templates for ELOG of GaN

Journal of Crystal Growth

Burckel, D.B.; Fan, Hongyou F.; Thaler, Gerald T.; Koleske, Daniel K.

We report the initial use of lithographically defined carbon growth templates for use as an epitaxial lateral overgrowth (ELOG) mask for metalorganic chemical vapor deposition (MOCVD) heteroepitaxial GaN on sapphire. Interferometric lithography is used to define high aspect ratio structures in SU-8, which are then pyrolyzed in a reducing atmosphere up to 1200 °C. The resist structures convert to amorphous carbon, shrinking 80% in the vertical direction and 53% in the horizontal direction, but maintain their pattern geometry and adhesion to the substrate. These templates are capable of surviving GaN nucleation layer growth temperatures (∼530 °C), GaN crystal growth and high-temperature annealing up to 1050 °C. This new approach to ELOG offers several advantages, requiring fewer processing steps, and favorable selectivity tendencies as well as the capability to create growth masks which are difficult or impossible to fabricate using a top-down etching approach. © 2008 Elsevier B.V. All rights reserved.

More Details
19 Results
19 Results