Publications

4 Results
Skip to search filters

Equations of state for hydrogen and deuterium

Knudson, Marcus D.; Kerley, Gerald I.

This report describes the complete revision of a deuterium equation of state (EOS) model published in 1972. It uses the same general approach as the 1972 EOS, i.e., the so-called 'chemical model,' but incorporates a number of theoretical advances that have taken place during the past thirty years. Three phases are included: a molecular solid, an atomic solid, and a fluid phase consisting of both molecular and atomic species. Ionization and the insulator-metal transition are also included. The most important improvements are in the liquid perturbation theory, the treatment of molecular vibrations and rotations, and the ionization equilibrium and mixture models. In addition, new experimental data and theoretical calculations are used to calibrate certain model parameters, notably the zero-Kelvin isotherms for the molecular and atomic solids, and the quantum corrections to the liquid phase. The report gives a general overview of the model, followed by detailed discussions of the most important theoretical issues and extensive comparisons with the many experimental data that have been obtained during the last thirty years. Questions about the validity of the chemical model are also considered. Implications for modeling the 'giant planets' are also discussed.

More Details

Equations of state for Be, Ni, W, and Au

Hertel, Eugene S.; Kerley, Gerald I.

The PANDA code is used to construct tabular equations of state (EOS) for four metals-- beryllium, nickel, tungsten and gold. Each EOS includes melting, vaporization, and thermal electronic excitation. Separate EOS tables are constructed for the solid and fluid phases, and the PANDA phase transition model is used to construct a multiphase EOS table for each metal. These new EOS tables are available for use with the CTH code and other hydrocodes that access the CTH database.

More Details

Equations of state for titanium and Ti6A14V alloy

Hertel, Eugene S.; Kerley, Gerald I.

The PANDA code is used to build tabular equations of state (EOS) for titanium and the alloy Ti4Al6V. Each EOS includes solid-solid phase transitions, melting, vaporization, and thermal electronic excitation. Separate EOS tables are constructed for the solid and fluid phases, and the PANDA phase transition model is used to construct a single multiphase table. The model explains a number of interesting features seen in the Hugoniot data, including an anomalous increase in shock velocity, recently observed near 200 GPa in Ti6Al4V. These new EOS tables are available for use with the CTH code and other hydrocodes that access the CTH database.

More Details

Multicomponent-Multiphase Equation of State for Carbon

Kerley, Gerald I.; Chhabildas, Lalit C.; Chhabildas, Lalit C.

The unique properties of carbon have made it both a fascinating and an important subject of experimental and theoretical studies for many years [1]-[4]. The contrast between its best-known elemental forms, graphite and diamond, is particularly striking. Graphite is black, has a rather low density and high compressibility (close to that of magnesium), and is greasy enough to be useful as a lubricant and in pencil leads. Diamond is brilliantly translucent, 60% more dense than graphite, less compressible than either tungsten or corundum, and its hardness makes it useful for polishing and cutting. This variability in properties, as well as that observed among the many classes of carbon compounds, arises because of profound differences in electronic structure of the carbon bonds [5]. A number of other solid forms of carbon are known. Pyrolytic graphite [6] is a polycrystalline material in which the individual crystallites have a structure quite similar to that of natural graphite. Fullerite (solid C 60), discovered only ten years ago [7], consists of giant molecules in which the atoms are arranged into pentagons and hexagons on the surface of a spherical cage. Amorphous carbon [8][9], including carbon black and ordinary soot, is a disordered form of graphite in which the hexagonally bonded layers are randomly oriented. Glassy carbons [9][10], on the other hand, have more random structures. Many other structures have been discussed [1][9].

More Details
4 Results
4 Results