Publications

20 Results
Skip to search filters

FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM)

Simmons, J.A.; Samara, George A.

This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

More Details

Dielectric and magnetic properties of FE- and Nb-doped CaCu3Ti4O12

Proposed for publication in Physical Review B.

Grubbs, Robert K.; Venturini, Eugene L.; Clem, Paul G.; Richardson, Jacob J.; Tuttle, Bruce T.; Samara, George A.

Detailed studies of the properties of ceramic CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) have clarified the physics of this interesting material and revealed several features not reported before. The dielectric relaxational properties of CCTO are explained in terms of a capacitive-layer model, as for an inhomogeneous semiconductor, consisting of semiconducting grains and insulating grain boundaries as also concluded by others. The kinetics of the main [low-temperature (T)] relaxation reveal that two different thermally activated processes in CCTO grains control the dynamics. A likely candidate defect responsible for the two processes is the oxygen vacancy which is a double donor. A higher-T relaxation is determined by grain boundary conduction. Both Nb and Fe doping lowered both the apparent dielectric constant {var_epsilon}{prime} and the dielectric loss, but increased Fe doping led to more dramatic effects. At 3 at.% Fe doping, the anomalous {var_epsilon}{prime}(T) response was removed, making the CCTO an intrinsic, very-low-loss dielectric. The intrinsic {var_epsilon}{prime}({approx}75) and its T dependence are measured and shown to be largely determined by a low-lying soft TO phonon. At low T, cubic CCTO transforms into an antiferromagnetic phase at T{sub N} = 25 K. T{sub N} is essentially independent of Nb doping (up to 4 at.%) and of hydrostatic pressure (up to {approx}7 kbar), but decreases significantly with Fe doping. Analysis of the high-T dependence of the magnetic susceptibility provided insight into the role of Fe as a dopant. Finally, an {var_epsilon}{prime}(T) anomaly associated with the onset of antiferromagnetic order has been discovered, providing evidence for coupling between the polarization and sublattice magnetization. The possible origin of this coupling is discussed.

More Details

The ferroelectric and relaxor properties of Pb(Sc0.5Nb0.5)O3 : influence of pressure and biasing electric field

Proposed for publication in Physical Review B.

Venturini, Eugene L.; Grubbs, Robert K.; Samara, George A.

The influences of hydrostatic pressure and biasing electric field on the dielectric properties and phase behavior of a single crystal of the perovskite compound Pb(Sc{sub 0.5}Nb{sub 0.5})O{sub 3}, (PSN) have been investigated. On cooling from high temperatures, the crystal first enters a relaxor (R) state and then spontaneously transforms to a ferroelectric (FE) phase at a temperature, T{sub c}, substantially below the peak temperature, T{sub m}, in the dielectric susceptibility. Based on earlier work on ceramic samples, this behavior suggests substantial chemical (Sc and Nb) disorder at the B sites. Pressure enhances the R state with strong indications that the FE phase should vanish at a pressure somewhat higher than the highest pressure reached in the experiments, making the R state the ground state of the crystal at reduced volume. A significant feature of the temperature (T)-pressure (P) phase diagram is the finding that the T{sub c}(P) phase line should terminate at a pressure between 10 and 15 kbar in a manner akin to a critical point; however, in the case of PSN this feature represents a FE-to-R crossover. Such behavior suggests that a path can be defined that takes the crystal from the FE phase to the R state without crossing a phase boundary. A biasing electric field favors the FE phase over the R state, and the results indicate that the R state vanishes at 5 kV/cm. The magnitudes of both the high T Curie-Weiss constant, C, and the change in entropy (or latent heat) at T{sub c} are found to be comparable to those of simple displacive perovskite oxides such as BaTiO{sub 3} and PbTiO{sub 3}.

More Details

Effects of pressure on deep levels in semiconductors: The MFe center in InP

Physica Status Solidi (B) Basic Research

Samara, George A.; Barnes, C.E.

This work investigated the effects of hydrostatic pressure on the properties and bistability of the scientifically challenging and technologically important deep MFe center in iron (Fe)-doped, n-type indium phosphide (InP). When occupied by electrons, the center can be reversibly placed in either of two configurations, termed A and B, by the proper choice of electric biasing conditions and temperature. Pressure has a very large influence on the balance between these two configurations, favoring A over B. Above 8 kbar essentially only the A configuration is observed. This result, along with detailed studies of the effects of pressure on the energetics of the two configurations and on the kinetics of the B → A transformation, provide important new insights about the nature of the two configurations and their associated deep levels. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

More Details

The relaxor properties of compositionally disordered perovskites: Ba- and Bi-substituted Pb(Zr1-xTix)O3

Proposed for publication in Physical Review B.

Samara, George A.

Dielectric spectroscopy, lattice structure, and thermal properties have revealed the relaxor dielectric response of Ba-substituted lead zirconate/titanate (PZT) having the composition (Pb0.71Ba0.29) (Zr0.71Ti0.29)O3 and containing 2 at. % Bi as an additive. The relaxor behavior is attributed to the compositional disorder introduced by the substitution of Ba2+ at the A site and Bi3+/5+ at the B site (and possibly A site) of the ABO3 PZT host lattice. Analysis of the results gives clear evidence for the nucleation of polar nanodomains at a temperature much higher than the peak (Tm) in the dielectric susceptibility. These nanodomains grow in size as their correlation length increases with decreasing temperature, and ultimately their dipolar fluctuations slow down below Tm leading to the formation of the relaxor state. The influences of hydrostatic pressure on the dielectric susceptibility and the dynamics of the relaxation of the polar nanodomains were investigated and can be understood in terms of the decrease in the size of the nanodomains with pressure. The influence of dc electrical bias on the susceptibility was also investigated. Physical models of the relaxor response of this material are discussed.

More Details

From ferroelectric to quantum paraelectric : KTa1-xNbxO3 (KTN), a model system

Samara, George A.; Samara, George A.

The mixed perovskite oxides KTa{sub 1-x}Nb{sub x}O{sub 3}, or KTN, are a model system for studying ferroelectric behavior and phase transitions under pressure. Crystals with x > 0.1 exhibit ferroelectric soft-mode behavior and a sequence of phase transitions, while for x {le} 0.02 a pressure-induced ferroelectric-to-relaxor crossover occurs. The system also exhibits a pressure-induced crossover from classical-to-quantum behavior ultimately leading to the complete suppression of the phase transition and the formation of a quantum paraelectric state.

More Details

Pressure as a probe of the physics of 18O - substituted SrTiO3

Proposed for publication in Physical Review B.

Venturini, Eugene L.; Venturini, Eugene L.; Samara, George A.

Studies of the dielectric properties and phase behavior of an {sup 18}O-substituted SrTiO{sub 3} (>97% {sup 18}O), or STO-18, crystal at 1 bar and as functions of hydrostatic pressure and applied dc biasing electric field have shed much light on the mechanism of the {sup 18}O-induced ferroelectric transition in this material. Dielectric measurements reveal an equilibrium phase transition (T{sub c} {approx_equal} 24K at 1 bar) and an enhancement of the static dielectric constant {var_epsilon} over that of normal (i.e., {sup 16}O) SrTiO{sub 3}, or STO-16, over a large temperature range above T{sub c}. This enhancement is quantitatively shown to be attributed to additional softening of the ferroelectric soft-mode frequency ({omega}{sub s}) of STO-16, in agreement with lattice dynamic calculations. Thus, in STO-18, two effects due to the heavier mass of {sup 18}O conspire to induce the transition: (i) this additional softening of {omega}{sub s} and (ii) damping of quantum fluctuations. Pressure lowers T{sub c} at the large initial rate of 20 K/kbar and completely suppresses the ferroelectric state leading to a quantum paraelectric state at 0.7 kbar, confirming earlier results. Very large effects of a biasing dc electric fields on the peak temperature and {var_epsilon} are also observed in the quantum regime reflecting the small characteristic energies of the system. The results also reveal a dielectric relaxation process near 10 K with interesting properties. The implications of all the results on our understanding of the physics of STO-18 are discussed.

More Details

The Dielectric Properties and Phase Transitions of [Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub 0.905} (PbTiO{sub 3}){sub 0.095}: Influence of Pressure

Physical Review Journal

Samara, George A.; Venturini, Eugene L.

Studies of the influences of temperature, hydrostatic pressure, dc biasing field and frequency on the dielectric constant ({epsilon}{prime}) and loss (tan {delta}) of single crystal [pb (Zn{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub 0.905} (PbTiO{sub 3}){sub 0.095}, or PZN-9.5PT for short, have provided a detailed view of the ferroelectric (FE) response and phase transitions of this technologically important material. While at 1 bar, the crystal exhibits on cooling a cubic-to-tetragonal FE transition followed by a second transition to a rhombohedral phase, pressure induces a FE-to-relaxer crossover, the relaxer phase becoming the ground state at pressures {ge}5 kbar. Analogy with earlier results suggests that this crossover is a common feature of compositionally-disordered soft mode ferroelectrics and can be understood in terms of a decrease in the correlation length among polar domains with increasing pressure. Application of a dc biasing electric field at 1 bar strengthens FE correlations, and can at high pressure re-stabilize the FE response. The pressure-temperature-electric field phase diagram was established. In the absence of dc bias the tetragonal phase vanishes at high pressure, the crystal exhibiting classic relaxor behavior. The dynamics of dipolar motion and the strong deviation from Curie-Weiss behavior of the susceptibility in the high temperature cubic phase are discussed.

More Details

Optical properties of colloidal germanium nanocrystals

Physical Review BIS

Wilcoxon, Jess P.; Provencio, P.N.; Samara, George A.

Highly crystalline germanium (Ge) nanocrystals in the size range 2--10 nm were grown in inverse micelles and purified and size-separated by high pressure liquid chromatography with on-line optical and electrical diagnostics. The nanocrystals retain the diamond structure of bulk Ge down to at least 2.0 nm (containing about 150 Ge atoms). The background- and impurity-free extinction and photoluminescence (PL) spectra of these nanocrystals revealed rich structure which was interpreted in terms of the bandstructure of Ge shifted to higher energies by quantum confinement. The shifts ranged from {minus}0.1 eV to over 1 eV for the various transitions. PL in the range 350--700 nm was observed from nanocrystals 2--5 nm in size. The 2.0 nm nanocrystals yielded the most intense PL (at 420 nm) which is believed to be intrinsic and attributed to direct recombination at {Gamma}. Excitation at high energy (250 nm) populates most of the conduction bands resulting in competing recombination channels and the observed broad PL spectra.

More Details

Pressure as a probe of the physics of ABO{sub 3} relaxor ferroelectrics

Samara, George A.

Results on a variety of mixed ABO{sub 3} oxides have revealed a pressure-induced ferroelectric-to-relaxor crossover and the continuous evolution of the energetics and dynamics of the relaxation process with increasing pressure. These common features have suggested a mechanism for the crossover phenomenon in terms of a large decrease in the correlation length for dipolar interactions with pressure--a unique property of soft mode or highly polarizable host lattices. The pressure effects as well as the interplay between pressure and dc biasing fields are illustrated for some recent results on PZN-9.5 PT,PMN and PLZT 6/65/35.

More Details

Pressure-induced crossover from long-to-short-range order in [Pb(Zn{sub 1/3})Nb{sub 2/3}O{sub 3}]{sub 0.905}(PbTiO{sub 3}){sub 0.095} single crystal

Applied Physics Letters

Samara, George A.; Venturini, Eugene L.

A pressure-induced crossover from normal Ferroelectric-to-Relaxer behavior has been observed in single crystal [Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub 0.905}(PbTiO{sub 3}){sub 0.0095}, or PZN - 9.5% PT. Analogy with similar observations for other perovskites indicates that this crossover is a general feature of compositionally-disordered soft mode ferroelectrics. The Pressure-Temperature phase diagram has been also determined.

More Details

Pressure as a probe of the physics of relaxor ferroelectrics

Samara, George A.

Pressure studies have provided new insights into the physics of compositionally-disordered ABO{sub 3} oxide relaxors. Specifically, results will be presented and discussed on a pressure-induced ferroelectric-to-relaxer crossover phenomenon, the continuous evolution of the energetic and dynamics of the relaxation process, and the interplay between pressure and electric field in determining the dielectric response.

More Details
20 Results
20 Results