Publications

Results 1–50 of 155
Skip to search filters

SFWST Disposal Research R&D 5-Year Plan - FY2021 Update

Sassani, David C.; Birkholzer, Jens T.; Camphouse, Russell C.; Freeze, Geoffrey A.; Stein, Emily S.

In the planning for FY2020 in the U.S. DOE NE-81 Spent Fuel and Waste Science and Technology (SFWST) Campaign, the DOE requested development of a plan for activities in the Disposal Research (DR) Research and Development (R&D) over a five (5)-year period, and DOE requested periodic updates to this plan. The DR R&D 5-year plan was provided to the DOE based on the FY2020 priorities and program structure (Sassani et al., 2020) and represents a strategic guide to the work within the DR R&D technical areas (i.e., the Control Accounts), focusing on the highest priority technical thrusts. This FY2021 report is the first update to the DR R&D 5-year plan for the SFWST Campaign DR R&D activities. This 5-year plan will be a living document and is planned to be updated periodically to provide review of accomplishments and for prioritization changes based on aspects including mission progress, external technical work, and changes in SFWST Campaign objectives and/or funding levels (i.e., Program Direction). The updates to this 5-year plan will address the DR R&D that has been completed (accomplishments) and the additional knowledge gaps to be investigated, with any updates to the DR R&D priorities for the next stages of activities.

More Details

Integration of the Back End of the Nuclear Fuel Cycle

Freeze, Geoffrey A.; Bonano, Evaristo J.; Swift, Peter S.; Kalinina, Elena A.; Hardin, Ernest H.; Price, Laura L.; Durbin, S.G.; Rechard, Robert P.; Gupta, Kuhika G.

Management of spent nuclear fuel and high-level radioactive waste consists of three main phases – storage, transportation, and disposal – commonly referred to as the back end of the nuclear fuel cycle. Current practice for commercial spent nuclear fuel management in the United States (US) includes temporary storage of spent fuel in both pools and dry storage systems at operating or shutdown nuclear power plants. Storage pools are filling to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler spent fuel from pools into dry storage. Unless a repository becomes available that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 136,000 metric tons of spent fuel in dry storage systems by mid-century, when the last plants in the current reactor fleet are decommissioned. Current designs for dry storage systems rely on large multi-assembly canisters, the most common of which are so-called “dual-purpose canisters” (DPCs). DPCs are certified for both storage and transportation, but are not designed or licensed for permanent disposal. The large capacity (greater number of spent fuel assemblies) of these canisters can lead to higher canister temperatures, which can delay transportation and/or complicate disposal. This current management practice, in which the utilities continue loading an ever-increasing inventory of larger DPCs, does not emphasize integration among storage, transportation, and disposal. This lack of integration does not cause safety issues, but it does lead to a suboptimal system that increases costs, complicates storage and transportation operations, and limits options for permanent disposal. This paper describes strategies for improving integration of management practices in the US across the entire back end of the nuclear fuel cycle. The complex interactions between storage, transportation, and disposal make a single optimal solution unlikely. However, efforts to integrate various phases of nuclear waste management can have the greatest impact if they begin promptly and continue to evolve throughout the remaining life of the current fuel cycle. A key factor that influences the path forward for integration of nuclear waste management practices is the identification of the timing and location for a repository. The most cost-effective path forward would be to open a repository by mid-century with the capability to directly dispose of DPCs without repackaging the spent fuel into disposalready canisters. Options that involve repackaging of spent fuel from DPCs into disposalready canisters or that delay the repository opening significantly beyond mid-century could add 10s of billions of dollars to the total system life cycle cost.

More Details

Generic FEPs Catalogue and Salt Knowledge Archive

Freeze, Geoffrey A.; Sevougian, David S.; Kuhlman, Kristopher L.; Gross, Michael B.; Wolf, Jens W.; Buhmann, Dieter B.; Bartol, Jeroen B.; Leigh, Christi D.; Monig, Jorg M.

This report describes the development of a comprehensive catalogue of generic features, events, and processes (FEPs) that are potentially important for the post-closure performance of a repository for high-level radioactive waste (HLW) and spent nuclear fuel (SNF) in salt (halite) host rock. The FEPs and other supporting information have been entered into a “SaltFEP” Database. The generic salt repository FEPs include consideration of relevant FEPs from a number of U.S., Dutch, German, and international FEP lists and should be a suitable starting point for any repository program in salt host rock. The salt FEP catalogue and database employ a FEP classification matrix approach that is based on the concept that a FEP is typically a process or event acting upon or within a feature. The FEP matrix provides a two-dimensional structure consisting of a Features/Components axis that defines the “rows” and a Processes/Events axis that defines the “columns” of the matrix. The design of the FEP classification matrix is consistent with repository performance assessment – the Features/Components axis is organized vertically to generally correspond to the direction of potential radionuclide migration (from the waste to the biosphere) and the Processes/Events axis is designed to represent the common two-way couplings between thermal processes and other processes (such as thermal-mechanical or thermal-hydrologic processes). Related FEPs can be easily identified – related FEPs will typically be grouped in a single matrix cell or aligned along a common row (Feature/Component) or column (Process/Event). The online SaltFEP database can be downloaded from www.saltfep.org. It contains the FEP matrix, the FEPs, and the associated processes for each FEP. It provides a starting point to create and document site-specific individual FEPs. Furthermore, the FEP matrix is connected to the Salt Knowledge Archive (SKA), a database of about 20,000 references and documents representing the historical knowledge on radioactive disposal in salt. This work is the result of an ongoing collaboration between researchers in the U.S., the Netherlands, and Germany, and supports the NEA Salt Club Mandate. It builds upon prior work which is documented.

More Details

Gap Analysis to Guide DOE R&D in Supporting Extended Storage and Transportation of Spent Nuclear Fuel: An FY2019 Assessment (Final Report)

Teague, Melissa C.; Saltzstein, Sylvia J.; Hanson, Brady D.; Sorenson, Ken B.; Freeze, Geoffrey A.

This report is a condensed version of previous reports identifying technical gaps that, if addressed, could be used to ensure the continued safe storage of SNF for extended periods and support licensing activities. This report includes updated gap priority assessments because the previous gap priorities were based on R&D performed through 2017. Much important work has been done since 2017 that requires a change in a few of the priority rankings to better focus the near-term R&D program. Background material, regulatory positions, operational and inventory status, and prioritization schemes are discussed in detail in Hanson et al. (2012) and Hanson and Alsaed (2019) and are not repeated in this report. One exception is an overview of the prioritization criteria for reference. This is meant to give the reader an appreciation of the framework for prioritization of the identified gaps. A complete discussion of the prioritization scheme is provided in Hanson and Alsaed (2019).

More Details

Deep borehole disposal safety case

Energies

Freeze, Geoffrey A.; Stein, Emily S.; Brady, Patrick V.; Sassani, David C.; Travis, Karl; Gibb, Fergus; Beswick, John

The safety case for deep borehole disposal of nuclear wastes contains a safety strategy, an assessment basis, and a safety assessment. The safety strategy includes strategies for management, siting and design, and assessment. The assessment basis considers site selection, pre-closure, and post-closure, which includes waste and engineered barriers, the geosphere/natural barriers, and the biosphere and surface environment. The safety assessment entails a pre-closure safety analysis, a post-closure performance assessment, and confidence enhancement analyses. This paper outlines the assessment basis and safety assessment aspects of a deep borehole disposal safety case. The safety case presented here is specific to deep borehole disposal of Cs and Sr capsules, but is generally applicable to other waste forms, such as spent nuclear fuel. The safety assessments for pre-closure and post-closure are briefly summarized from other sources; key issues for confidence enhancement are described in greater detail. These confidence enhancement analyses require building the technical basis for geologically old, reducing, highly saline brines at the depth of waste emplacement, and using reactive-transport codes to predict their movement in post-closure. The development and emplacement of borehole seals above the waste emplacement zone is also important to confidence enhancement.

More Details

Deep Borehole Disposal Safety Case

Freeze, Geoffrey A.; Stein, Emily S.; Brady, Patrick V.; Lopez, Carlos M.; Sassani, David C.; Travel, Karl T.; Gibb, Fergus G.

This report describes the current status of the safety case for the deep borehole disposal (DBD) concept. It builds on the safety case presented in Freeze et al. (2016), presenting new information and identifying additional information needs for specific safety case elements. At this preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. Updated information is provided for the following safety case elements: * pre-closure basis and safety analysis, * post-closure basis and performance assessment, and * confidence enhancement. This research was performed as part of the deep borehole field test (DBFT). Based on revised U.S. Department of Energy (DOE) priorities in mid-2017, the DBFT and other research related to a DBD option was discontinued; ongoing work and documentation were closed out by the end of fiscal year (FY) 2017. This report was initiated as part of the DBFT and documented as an incomplete draft at the end of FY 2017. The report was finalized by Sandia National Laboratories in FY2018 without DOE funding, subsequent to the termination of the DBFT, and published in FY2019. iii

More Details

Post-Closure performance assessment for deep borehole disposal of Cs/Sr capsules

Energies

Freeze, Geoffrey A.; Stein, Emily S.; Brady, Patrick V.

Post-closure performance assessment (PA) calculations suggest that deep borehole disposal of cesium (Cs)/strontium (Sr) capsules, a U.S. Department of Energy (DOE) waste form (WF), is safe, resulting in no releases to the biosphere over 10,000,000 years when the waste is placed in a 3-5 km deep waste disposal zone. The same is true when a hypothetical breach of a stuck waste package (WP) is assumed to occur at much shallower depths penetrated by through-going fractures. Cs and Sr retardation in the host rock is a key control over movement. Calculated borehole performance would be even stronger if credit was taken for the presence of the WP.

More Details
Results 1–50 of 155
Results 1–50 of 155