Publications

6 Results
Skip to search filters

Linear actuation using milligram quantities of CL-20 and TAGDNAT

Propellants, Explosives, Pyrotechnics

Tappan, Alexander S.; Basiliere, Marc; Ball, J.P.; Snedigar, Shane; Fischer, Gary J.; Salton, Jonathan R.

There are numerous applications for small-scale actuation utilizing pyrotechnics and explosives. In certain applications, especially when multiple actuation strokes are needed, or actuator reuse is required, it is desirable to have all gaseous combustion products with no condensed residue in the actuator cylinder. Toward this goal, we have performed experiments on utilizing milligram quantities of high explosives to drive a millimeterdiameter actuator with a stroke of 30 mm. Calculations were performed to select proper material quantities to provide 0.5 J of actuation energy. This was performed utilizing the thermochemical code Cheetah to calculate the impetus for numerous propellants and to select quantities based on estimated efficiencies of these propellants at small scales. Milligram quantities of propellants were loaded into a small-scale actuator and ignited with an ignition increment and hot wire ignition. Actuator combustion chamber pressure was monitored with a pressure transducer and actuator stroke was monitored using a laser displacement meter. Total actuation energy was determined by calculating the kinetic energy of reaction mass motion against gravity. Of the materials utilized, the best performance was obtained with a mixture of 2,4,6,8,10,12-hexanitro-2,4,6,8,10, 12- hexaazaisowurtzitane (CL-20) and bis-triaminoguanidinium(3,3' dinitroazotriazolate) (TAGDNAT). © 2010 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

More Details

Covert air vehicle 2003 LDRD final report

Callow, Diane S.; Callow, Diane S.; Salton, Jonathan R.; Callow, Diane S.; Fischer, Gary J.

This report describes the technical work carried out under a 2003 Laboratory Directed Research and Development project to develop a covert air vehicle. A mesoscale air vehicle that mimics a bird offers exceptional mobility and the possibility of remaining undetected during flight. Although some such vehicles exist, they are lacking in key areas: unassisted landing and launching, true mimicry of bird flight to remain covert, and a flapping flight time of any real duration. Current mainstream technology does not have the energy or power density necessary to achieve bird like flight for any meaningful length of time; however, Sandia has unique combustion powered linear actuators with the unprecedented high energy and power density needed for bird like flight. The small-scale, high-pressure valves and small-scale ignition to make this work have been developed at Sandia. We will study the feasibility of using this to achieve vehicle takeoff and wing flapping for sustained flight. This type of vehicle has broad applications for reconnaissance and communications networks, and could prove invaluable for military and intelligence operations throughout the world. Initial tests were conducted on scaled versions of the combustion-powered linear actuator. The tests results showed that heat transfer and friction effects dominate the combustion process at 'bird-like' sizes. The problems associated with micro-combustion must be solved before a true bird-like ornithopter can be developed.

More Details

Long range hopping mobility platform

Fischer, Gary J.; Fischer, Gary J.; Spletzer, Barry L.

Sandia National Laboratories has developed a mesoscale hopping mobility platform (Hopper) to overcome the longstanding problems of mobility and power in small scale unmanned vehicles. The system provides mobility in situations such as negotiating tall obstacles and rough terrain that are prohibitive for other small ground base vehicles. The Defense Advanced Research Projects Administration (DARPA) provided the funding for the hopper project.

More Details
6 Results
6 Results