Publications

Results 1–25 of 54
Skip to search filters

Sierra Structural Dynamics?User?s Notes

Reese, Garth M.; Author, No A.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Navy Enhanced Sierra Mechanics (NESM): Toolbox for Predicting Navy Shock and Damage

Computing in Science and Engineering

Moyer, Thomas; Stergiou, Jonathan; Reese, Garth M.; Abboud, Najib

The US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.

More Details

Sierra Structural Dynamics?User?s Notes

Reese, Garth M.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra Structural Dynamics Theory Manual

Team, Sierra/SD T.; Reese, Garth M.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.

More Details

Sierra Structural Dynamics User's Notes

Team, Sierra/SD T.; Reese, Garth M.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

A COMPARISON OF TRANSIENT INFINITE ELEMENTS AND TRANSIENT KIRCHHOFF INTEGRAL METHODS FOR FAR FIELD ACOUSTIC ANALYSIS

Journal of Computational Acoustics

Walsh, Timothy W.; Bhardwaj, Manoj K.; Dohrmann, Clark R.; Reese, Garth M.; Wilson, Christopher R.

Finite element analysis of transient acoustic phenomena on unbounded exterior domains is very common in engineering analysis. In these problems there is a common need to compute the acoustic pressure at points outside of the acoustic mesh, since meshing to points of interest is impractical in many scenarios. In aeroacoustic calculations, for example, the acoustic pressure may be required at tens or hundreds of meters from the structure. In these cases, a method is needed for post-processing the acoustic results to compute the response at far-field points. In this paper, we compare two methods for computing far-field acoustic pressures, one derived directly from the infinite element solution, and the other from the transient version of the Kirchhoff integral. Here, we show that the infinite element approach alleviates the large storage requirements that are typical of Kirchhoff integral and related procedures, and also does not suffer from loss of accuracy that is an inherent part of computing numerical derivatives in the Kirchhoff integral. In order to further speed up and streamline the process of computing the acoustic response at points outside of the mesh, we also address the nonlinear iterative procedure needed for locating parametric coordinates within the host infinite element of far-field points, the parallelization of the overall process, linear solver requirements, and system stability considerations.

More Details

Probability distribution of von Mises stress in the presence of pre-load

Segalman, Daniel J.; Field, Richard V.; Reese, Garth M.

Random vibration under preload is important in multiple endeavors, including those involving launch and re-entry. There are some methods in the literature to begin to address this problem, but there is nothing that accommodates the existence of preloads and the necessity of making probabilistic statements about the stress levels likely to be encountered. An approach to achieve to this goal is presented along with several simple illustrations.

More Details

Salinas : theory manual

Reese, Garth M.; Walsh, Timothy W.; Bhardwaj, Manoj K.

Salinas provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas, we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.

More Details
Results 1–25 of 54
Results 1–25 of 54