Publications

19 Results
Skip to search filters

At-Speed Defect Localization by Combining Laser Scanning Microscopy and Power Spectrum Analysis

IEEE International Reliability Physics Symposium Proceedings

Miller, Mary A.; Cole, Edward I.; Kraus, Garth K.; Robertson, Perry J.

The defect detection capabilities of Power Spectrum Analysis (PSA) [1] have been successfully combined with local laser heating to isolate defective circuitry in a high-speed Si Phase Locked Loop (PLL). The defective operation resulted in missed counts when operating at multi-GHz speeds and elevated temperatures. By monitoring PSA signals at a specific frequency through zero-spanning and scanning the suspect device with a heating laser (1340 nm wavelength), the area(s) causing failure were localized. PSA circumvents the need for a rapid pass/fail detector like that used for Soft Defect Localization (SDL) [2] or Laser-Assisted Defect Analysis (LADA) [3] and converts the at-speed failure to a DC signature. The experimental setup for image acquisition and examples demonstrating utility are described.

More Details

Ku-band six-bit RF MEMS time delay network

2008 IEEE CSIC Symposium: GaAs ICs Celebrate 30 Years in Monterey, Technical Digest 2008

Nordquist, Christopher N.; Dyck, Christopher D.; Kraus, Garth K.; Sullivan, Charles T.; Austin IV, Franklin; Finnegan, Patrick S.; Ballance, Mark H.

A six-bit time delay circuit operating from DC to 18 GHz is reported. Capacitively loaded transmission lines are used to reduce the physical length of the delay elements and shrink the die size. Additionally, selection of the reference line lengths to avoid resonances allows the replacement of series-shunt switching elements with only series elements. With through-wafer transitions and a packaging seal ring, the 7 mm x 10 mm circuit demonstrates <2.8 dB of loss and 60 ps of delay with good delay flatness and accuracy through 18 GHz. © 2008 IEEE.

More Details

Nanomechanical switch for integration with CMOS logic

Proposed for publication in the Journal of Microelectronics and Micromechanics.

Czaplewski, David A.; Patrizi, G.A.; Kraus, Garth K.; Wendt, J.R.; Nordquist, Christopher N.; Wolfley, Steven L.; De Boer, Maarten P.

We designed, fabricated and measured the performance of nanoelectromechanical (NEMS) switches. Initial data are reported with one of the switch designs having a measured switching time of 400 ns and an operating voltage of 5 V. The switches operated laterally with unmeasurable leakage current in the 'off' state. Surface micromachining techniques were used to fabricate the switches. All processing was CMOS compatible. A single metal layer, defined by a single mask step, was used as the mechanical switch layer. The details of the modeling, fabrication and testing of the NEMS switches are reported.

More Details
19 Results
19 Results