Publications

5 Results
Skip to search filters

RADTRAN/RADCAT user guide

Weiner, Ruth F.; Mills, G.S.; O'Donnell, Brandon M.; Orcutt, David J.

RADTRAN is a program and code for calculating the risks of transporting radioactive materials. The first versions of the program, RADTRAN I and II, were developed for NUREG-0170 (USNRC, 1977), the first environmental impact statement on transportation of radioactive materials. RADTRAN and its associated software have undergone a number of improvements and advances consistent with improvements in computer technology.

More Details

Verification and Validation of RADTRAN 5.5

Weiner, Ruth F.; Mills, G.S.

This document contains a description of the verification and validation process used for the RADTRAN 5.5 code. The verification and validation process ensured the proper calculational models and mathematical and numerical methods were used in the RADTRAN 5.5 code for the determination of risk and consequence assessments. The differences between RADTRAN 5 and RADTRAN 5.5 are the addition of tables, an expanded isotope library, and the additional User-Defined meteorological option for accident dispersion. 3

More Details

RadCat 2.0 User Guide

Osborn, Douglas M.; Weiner, Ruth F.; Mills, G.S.

This document provides a detailed discussion and a guide for the use of the RadCat 2.0 Graphical User Interface input file generator for the RADTRAN 5.5 code. The differences between RadCat 2.0 and RadCat 1.0 can be attributed to the differences between RADTRAN 5 and RADTRAN 5.5 as well as clarification for some of the input parameters. 3

More Details

Accident Conditions versus Regulatory Test for NRC-Approved UF6 Packages

Mills, G.S.; Mills, G.S.; Ammerman, Douglas J.; Lopez Mestre, Carlos L.

The Nuclear Regulatory Commission (NRC) approves new package designs for shipping fissile quantities of UF{sub 6}. Currently there are three packages approved by the NRC for domestic shipments of fissile quantities of UF{sub 6}: NCI-21PF-1; UX-30; and ESP30X. For approval by the NRC, packages must be subjected to a sequence of physical tests to simulate transportation accident conditions as described in 10 CFR Part 71. The primary objective of this project was to relate the conditions experienced by these packages in the tests described in 10 CFR Part 71 to conditions potentially encountered in actual accidents and to estimate the probabilities of such accidents. Comparison of the effects of actual accident conditions to 10 CFR Part 71 tests was achieved by means of computer modeling of structural effects on the packages due to impacts with actual surfaces, and thermal effects resulting from test and other fire scenarios. In addition, the likelihood of encountering bodies of water or sufficient rainfall to cause complete or partial immersion during transport over representative truck routes was assessed. Modeled effects, and their associated probabilities, were combined with existing event-tree data, plus accident rates and other characteristics gathered from representative routes, to derive generalized probabilities of encountering accident conditions comparable to the 10 CFR Part 71 conditions. This analysis suggests that the regulatory conditions are unlikely to be exceeded in real accidents, i.e. the likelihood of UF{sub 6} being dispersed as a result of accident impact or fire is small. Moreover, given that an accident has occurred, exposure to water by fire-fighting, heavy rain or submersion in a body of water is even less probable by factors ranging from 0.5 to 8E-6.

More Details
5 Results
5 Results