Publications

Results 1–50 of 57
Skip to search filters

Conflicting Information and Compliance With COVID-19 Behavioral Recommendations

Naugle, Asmeret B.; Rothganger, Fredrick R.; Verzi, Stephen J.; Doyle, Casey L.

The prevalence of COVID-19 is shaped by behavioral responses to recommendations and warnings. Available information on the disease determines the population’s perception of danger and thus its behavior; this information changes dynamically, and different sources may report conflicting information. We study the feedback between disease, information, and stay-at-home behavior using a hybrid agent-based-system dynamics model that incorporates evolving trust in sources of information. We use this model to investigate how divergent reporting and conflicting information can alter the trajectory of a public health crisis. The model shows that divergent reporting not only alters disease prevalence over time, but also increases polarization of the population’s behaviors and trust in different sources of information.

More Details

ATHENA: Analytical Tool for Heterogeneous Neuromorphic Architectures

Cardwell, Suma G.; Plagge, Mark P.; Hughes, Clayton H.; Rothganger, Fredrick R.; Agarwal, Sapan A.; Feinberg, Benjamin F.; Awad, Amro A.; mcfarland, john m.; Parker, Luke G.

The ASC program seeks to use machine learning to improve efficiencies in its stockpile stewardship mission. Moreover, there is a growing market for technologies dedicated to accelerating AI workloads. Many of these emerging architectures promise to provide savings in energy efficiency, area, and latency when compared to traditional CPUs for these types of applications — neuromorphic analog and digital technologies provide both low-power and configurable acceleration of challenging artificial intelligence (AI) algorithms. If designed into a heterogeneous system with other accelerators and conventional compute nodes, these technologies have the potential to augment the capabilities of traditional High Performance Computing (HPC) platforms [5]. This expanded computation space requires not only a new approach to physics simulation, but the ability to evaluate and analyze next-generation architectures specialized for AI/ML workloads in both traditional HPC and embedded ND applications. Developing this capability will enable ASC to understand how this hardware performs in both HPC and ND environments, improve our ability to port our applications, guide the development of computing hardware, and inform vendor interactions, leading them toward solutions that address ASC’s unique requirements.

More Details

Modeling Analog Tile-Based Accelerators Using SST

Feinberg, Benjamin F.; Agarwal, Sapan A.; Plagge, Mark P.; Rothganger, Fredrick R.; Cardwell, Suma G.; Hughes, Clayton H.

Analog computing has been widely proposed to improve the energy efficiency of multiple important workloads including neural network operations, and other linear algebra kernels. To properly evaluate analog computing and explore more complex workloads such as systems consisting of multiple analog data paths, system level simulations are required. Moreover, prior work on system architectures for analog computing often rely on custom simulators creating signficant additional design effort and complicating comparisons between different systems. To remedy these issues, this report describes the design and implementation of a flexible tile-based analog accelerator element for the Structural Simulation Toolkit (SST). The element focuses on heavily on the tile controller—an often neglected aspect of prior work—that is sufficiently versatile to simulate a wide range of different tile operations including neural network layers, signal processing kernels, and generic linear algebra operations without major constraints. The tile model also interoperates with existing SST memory and network models to reduce the overall development load and enable future simulation of heterogeneous systems with both conventional digital logic and analog compute tiles. Finally, both the tile and array models are designed to easily support future extensions as new analog operations and applications that can benefit from analog computing are developed.

More Details

Emergent Recursive Multiscale Interaction in Complex Systems

Naugle, Asmeret B.; Doyle, Casey L.; Sweitzer, Matthew; Rothganger, Fredrick R.; Verzi, Stephen J.; Lakkaraju, Kiran L.; Kittinger, Robert; Bernard, Michael L.; Chen, Yuguo C.; Loyal, Joshua L.; Mueen, Abdullah M.

This project studied the potential for multiscale group dynamics in complex social systems, including emergent recursive interaction. Current social theory on group formation and interaction focuses on a single scale (individuals forming groups) and is largely qualitative in its explanation of mechanisms. We combined theory, modeling, and data analysis to find evidence that these multiscale phenomena exist, and to investigate their potential consequences and develop predictive capabilities. In this report, we discuss the results of data analysis showing that some group dynamics theory holds at multiple scales. We introduce a new theory on communicative vibration that uses social network dynamics to predict group life cycle events. We discuss a model of behavioral responses to the COVID-19 pandemic that incorporates influence and social pressures. Finally, we discuss a set of modeling techniques that can be used to simulate multiscale group phenomena.

More Details

Group Formation Theory at Multiple Scales

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Doyle, Casey L.; Naugle, Asmeret B.; Bernard, Michael L.; Lakkaraju, Kiran L.; Kittinger, Robert; Sweitzer, Matthew; Rothganger, Fredrick R.

There is a wealth of psychological theory regarding the drive for individuals to congregate and form social groups, positing that people may organize out of fear, social pressure, or even to manage their self-esteem. We evaluate three such theories for multi-scale validity by studying them not only at the individual scale for which they were originally developed, but also for applicability to group interactions and behavior. We implement this multi-scale analysis using a dataset of communications and group membership derived from a long-running online game, matching the intent behind the theories to quantitative measures that describe players’ behavior. Once we establish that the theories hold for the dataset, we increase the scope to test the theories at the higher scale of group interactions. Despite being formulated to describe individual cognition and motivation, we show that some group dynamics theories hold at the higher level of group cognition and can effectively describe the behavior of joint decision making and higher-level interactions.

More Details

Resilient Computing with Dynamical Systems

Rothganger, Fredrick R.; Cardwell, Suma G.

We reformulate fundamental numerical problems to run on novel hardware inspired by the brain. Such "neuromorphie hardware consumes less energy per computation, promising a means to augment next-generation exascale computers. However, their programming model is radically different from floating-point machines, with fewer guarantees about precision and communication. The approach is to pass each given problem through a sequence of transformations (algorithmic "reductions") which change it from conventional form into a dynamical system, then ultimately into a spiking neural network. Results for the eigenvalue problem are presented, showing that the dynamical system formulation is feasible. This page left blank

More Details

Computing with spikes: The advantage of fine-grained timing

Neural Computation

Verzi, Stephen J.; Rothganger, Fredrick R.; Parekh, Ojas D.; Quach, Tu-Thach Q.; Miner, Nadine E.; Vineyard, Craig M.; James, Conrad D.; Aimone, James B.

Neural-inspired spike-based computing machines often claim to achieve considerable advantages in terms of energy and time efficiency by using spikes for computation and communication. However, fundamental questions about spike-based computation remain unanswered. For instance, how much advantage do spike-based approaches have over conventionalmethods, and underwhat circumstances does spike-based computing provide a comparative advantage? Simply implementing existing algorithms using spikes as the medium of computation and communication is not guaranteed to yield an advantage. Here, we demonstrate that spike-based communication and computation within algorithms can increase throughput, and they can decrease energy cost in some cases. We present several spiking algorithms, including sorting a set of numbers in ascending/descending order, as well as finding the maximum or minimum ormedian of a set of numbers.We also provide an example application: a spiking median-filtering approach for image processing providing a low-energy, parallel implementation. The algorithms and analyses presented here demonstrate that spiking algorithms can provide performance advantages and offer efficient computation of fundamental operations useful in more complex algorithms.

More Details

A spike-Timing neuromorphic architecture

2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings

Hill, Aaron J.; Donaldson, Jonathon W.; Rothganger, Fredrick R.; Vineyard, Craig M.; Follett, David R.; Follett, Pamela L.; Smith, Michael R.; Verzi, Stephen J.; Severa, William M.; Wang, Felix W.; Aimone, James B.; Naegle, John H.; James, Conrad D.

Unlike general purpose computer architectures that are comprised of complex processor cores and sequential computation, the brain is innately parallel and contains highly complex connections between computational units (neurons). Key to the architecture of the brain is a functionality enabled by the combined effect of spiking communication and sparse connectivity with unique variable efficacies and temporal latencies. Utilizing these neuroscience principles, we have developed the Spiking Temporal Processing Unit (STPU) architecture which is well-suited for areas such as pattern recognition and natural language processing. In this paper, we formally describe the STPU, implement the STPU on a field programmable gate array, and show measured performance data.

More Details

Computational perspectives on adult neurogenesis

The Rewiring Brain: A Computational Approach to Structural Plasticity in the Adult Brain

Carlson, Kristofor D.; Rothganger, Fredrick R.; Aimone, James B.

The continuous integration of young neurons into the adult brain represents a novel form of structural plasticity and has inspired the creation of numerous computational models to understand the functional role of adult neurogenesis. These computational models consist of abstract models that focus on the utility of new neurons in simple neural networks and biologically based models constrained by anatomical data that explore the role of new neurons in specific neural circuits such as the hippocampus. Simulation results from both classes of models have suggested a number of theoretical roles for neurogenesis such as increasing the capacity to learn novel information, promoting temporal context encoding, and influencing pattern separation. In this review, we discuss strategies and findings of past computational modeling efforts, current challenges and limitations, and new computational approaches pertinent to modeling adult neurogenesis.

More Details

A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

Biologically Inspired Cognitive Architectures

James, Conrad D.; Aimone, James B.; Miner, Nadine E.; Vineyard, Craig M.; Rothganger, Fredrick R.; Carlson, Kristofor D.; Mulder, Samuel A.; Draelos, Timothy J.; Faust, Aleksandra; Marinella, Matthew J.; Naegle, John H.; Plimpton, Steven J.

Biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classes such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. In addition, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.

More Details

Computing with dynamical systems

2016 IEEE International Conference on Rebooting Computing, ICRC 2016 - Conference Proceedings

Rothganger, Fredrick R.; James, Conrad D.; Aimone, James B.

The effort to develop larger-scale computing systems introduces a set of related challenges: Large machines are more difficult to synchronize. The sheer quantity of hardware introduces more opportunities for errors. New approaches to hardware, such as low-energy or neuromorphic devices are not directly programmable by traditional methods. These three challenges may be addressed, at least for a subset of interesting problems, by a dynamical systems approach. The initial state of system represents the problem, and the final state of the system represents the solution. By carefully controlling the attractive basin of the system, we can move it between these two points while tolerating errors, which appear as perturbations. Here we describe both conventional and neural computers as dynamical systems, and show how to construct algorithms with resilience to noise, using traditional numerical problems as a special case. This suggests a reduction from numerical problems to spiking neural hardware such as IBM's TrueNorth.

More Details

Training neural hardware with noisy components

Proceedings of the International Joint Conference on Neural Networks

Rothganger, Fredrick R.; Evans, Brian R.; Aimone, James B.; DeBenedictis, Erik

Some next generation computing devices may consist of resistive memory arranged as a crossbar. Currently, the dominant approach is to use crossbars as the weight matrix of a neural network, and to use learning algorithms that require small incremental weight updates, such as gradient descent (for example Backpropagation). Using real-world measurements, we demonstrate that resistive memory devices are unlikely to support such learning methods. As an alternative, we offer a random search algorithm tailored to the measured characteristics of our devices.

More Details

Development characterization and modeling of a TaOx ReRAM for a neuromorphic accelerator

Marinella, Matthew J.; Mickel, Patrick R.; Lohn, Andrew L.; Hughart, David R.; Bondi, Robert J.; Mamaluy, Denis M.; Hjalmarson, Harold P.; Stevens, James E.; Decker, Seth D.; Apodaca, Roger A.; Evans, Brian R.; Aimone, James B.; Rothganger, Fredrick R.; James, Conrad D.; DeBenedictis, Erik

This report discusses aspects of neuromorphic computing and how it is used to model microsystems.

More Details

Final report for LDRD project 11-0783 : directed robots for increased military manpower effectiveness

Rohrer, Brandon R.; Morrow, James D.; Rothganger, Fredrick R.; Xavier, Patrick G.; Wagner, John S.

The purpose of this LDRD is to develop technology allowing warfighters to provide high-level commands to their unmanned assets, freeing them to command a group of them or commit the bulk of their attention elsewhere. To this end, a brain-emulating cognition and control architecture (BECCA) was developed, incorporating novel and uniquely capable feature creation and reinforcement learning algorithms. BECCA was demonstrated on both a mobile manipulator platform and on a seven degree of freedom serial link robot arm. Existing military ground robots are almost universally teleoperated and occupy the complete attention of an operator. They may remove a soldier from harm's way, but they do not necessarily reduce manpower requirements. Current research efforts to solve the problem of autonomous operation in an unstructured, dynamic environment fall short of the desired performance. In order to increase the effectiveness of unmanned vehicle (UV) operators, we proposed to develop robots that can be 'directed' rather than remote-controlled. They are instructed and trained by human operators, rather than driven. The technical approach is modeled closely on psychological and neuroscientific models of human learning. Two Sandia-developed models are utilized in this effort: the Sandia Cognitive Framework (SCF), a cognitive psychology-based model of human processes, and BECCA, a psychophysical-based model of learning, motor control, and conceptualization. Together, these models span the functional space from perceptuo-motor abilities, to high-level motivational and attentional processes.

More Details
Results 1–50 of 57
Results 1–50 of 57