Microelectronics and Microsystems at Sandia National Labs pdf.pptx
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report captures the initial conclusions of the DOE seven National Lab team collaborating on the “Solving the Information Technology Energy Challenge Beyond Moore’s Law” initiative from the DOE Big Idea Summit III held in April of 2016. The seven Labs held a workshop in Albuquerque, NM in late July 2016 and gathered 40 researchers into 5 working groups: 4 groups spanning the levels of the co-design framework shown below, and a 5th working group focused on extending and advancing manufacturing approaches and coupling their constraints to all of the framework levels. These working groups have identified unique capabilities within the Labs to support the key challenges of this Beyond Moore’s Law Computing (BMC) vision, as well as example first steps and potential roadmaps for technology development.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2015 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference, AVFOP 2015
Sandia's broad national security mission has supported novel optoelectronics and integrated photonics R&D and technology transfer for over 30 years. Examples of this history, current capabilities, and potential future directions will be discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sandia National Laboratories Metamaterial Science and Technology Program has developed novel HPC-based design tools, wafer scale 3D fabrication processes, and characterization tools to enable thermal IR optical metamaterial application studies.
Abstract not provided.
Phononic crystals (or acoustic crystals) are the acoustic wave analogue of photonic crystals. Here a periodic array of scattering inclusions located in a homogeneous host material forbids certain ranges of acoustic frequencies from existence within the crystal, thus creating what are known as acoustic (or phononic) bandgaps. The vast majority of phononic crystal devices reported prior to this LDRD were constructed by hand assembling scattering inclusions in a lossy viscoelastic medium, predominantly air, water or epoxy, resulting in large structures limited to frequencies below 1 MHz. Under this LDRD, phononic crystals and devices were scaled to very (VHF: 30-300 MHz) and ultra (UHF: 300-3000 MHz) high frequencies utilizing finite difference time domain (FDTD) modeling, microfabrication and micromachining technologies. This LDRD developed key breakthroughs in the areas of micro-phononic crystals including physical origins of phononic crystals, advanced FDTD modeling and design techniques, material considerations, microfabrication processes, characterization methods and device structures. Micro-phononic crystal devices realized in low-loss solid materials were emphasized in this work due to their potential applications in radio frequency communications and acoustic imaging for medical ultrasound and nondestructive testing. The results of the advanced modeling, fabrication and integrated transducer designs were that this LDRD produced the 1st measured phononic crystals and phononic crystal devices (waveguides) operating in the VHF (67 MHz) and UHF (937 MHz) frequency bands and established Sandia as a world leader in the area of micro-phononic crystals.
Abstract not provided.
The advent of high quality factor (Q) microphotonic-resonators has led to the demonstration of high-fidelity optical sensors of many physical phenomena (e.g. mechanical, chemical, and biological sensing) often with far better sensitivity than traditional techniques. Microphotonic-resonators also offer potential advantages as uncooled thermal detectors including significantly better noise performance, smaller pixel size, and faster response times than current thermal detectors. In particular, microphotonic thermal detectors do not suffer from Johnson noise in the sensor, offer far greater responsivity, and greater thermal isolation as they do not require metallic leads to the sensing element. Such advantages make the prospect of a microphotonic thermal imager highly attractive. Here, we introduce the microphotonic thermal detection technique, present the theoretical basis for the approach, discuss our progress on the development of this technology and consider future directions for thermal microphotonic imaging. Already we have demonstrated viability of device fabrication with the successful demonstration of a 20{micro}m pixel, and a scalable readout technique. Further, to date, we have achieved internal noise performance (NEP{sub Internal} < 1pW/{radical}Hz) in a 20{micro}m pixel thereby exceeding the noise performance of the best microbolometers while simultaneously demonstrating a thermal time constant ({tau} = 2ms) that is five times faster. In all, this results in an internal detectivity of D*{sub internal} = 2 x 10{sup 9}cm {center_dot} {radical}Hz/W, while roughly a factor of four better than the best uncooled commercial microbolometers, future demonstrations should enable another order of magnitude in sensitivity. While much work remains to achieve the level of maturity required for a deployable technology, already, microphotonic thermal detection has demonstrated considerable potential.
2nd IEEE LEOS Winter Topicals, WTM 2009
Sandia National Laboratories is leveraging the extensive CMOS, MEMS, compound semiconductor, and nanotechnology fabrication and test resources at Sandia National Laboratories to explore new science and technology in photonic crystals, plasmonics, metamaterials, and silicon photonics.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.