Publications

14 Results
Skip to search filters

Sequestration of radionuclides and heavy metals by hydroxyapatite doped with Fe, Cu and Sn

Helean, Katheryn B.; Walton, Fotini W.; Neidel, Linnah L.; Larese, Kathleen C.; Salas, Fred S.

Apatite, Ca{sub 5}(PO{sub 4}){sub 3}(F,OH,Cl)(P6{sub 3}/m, Z=2), is the most abundant phosphate mineral on Earth. The end-member hydroxyapatite, Ca{sub 5}(PO{sub 4}){sub 3}OH(P2{sub 1}/b), is the primary mineral component in bones and teeth and tends to scavenge and sequester heavy metals in the human body. Hydroxyapatite has also been shown to be effective at sequestering radionuclides and heavy metals in certain natural systems (Dybowska et al., 2004). Hydroxyapatite has been the focus of many laboratory studies and is utilized for environmental remediation of contaminated sites (Moore et al., 2002). The crystal structure of apatite tolerates a great deal of distortion caused by extensive chemical substitutions. Metal cations (e.g. REE, actinides, K, Na, Mn, Ni, Cu, Co, Zn, Sr, Ba, Pb, Cd, Fe) substitute for Ca, and oxyanions (e.g. AsO{sub 4}{sup 3-}, SO{sub 4}{sup 2-}, CO{sub 3}{sup 2-}, SiO{sub 4}{sup 4-}, CrO{sub 4}{sup 2-}) replace PO{sub 4}{sup 3-} through a series of coupled substitutions that preserve electroneutrality. Owing to the ability of apatite to incorporate 'impurities'(including actinides) gives rise to its proposed use as a waste form for radionuclides. Recent work at Sandia National Laboratory demonstrated that hydroxyapatite has a strong affinity for U, Pu, Np, Sr and Tc reduced from pertechnetate (TcO{sub 4}{sup -}) by SnCl{sub 2} (Moore et al., 2002). Based on these earlier promising results, an investigation was initiated into the use of apatite-type materials doped with aliovalent cations including Fe, Cu and Sn as Tc-scavengers. Synthetic Fe and Cu-doped hydroxyapatite samples were prepared by precipitation of Ca, from Ca-acetate, and P, from ammonium phosphate. The Fe and Cu were introduced as chlorides into the Ca-acetate solution. Stannous chloride was used as a reducing agent and was apparently incorporated into the crystal structures of the hydroxyapatite samples in small, as yet undetermined quantities.

More Details

Containment of uranium in the proposed Egyptian geologic repository for radioactive waste using hydroxyapatite

Hasan, Ahmed H.; Larese, Kathleen C.; Headley, Thomas J.; Zhao, Hongting Z.; Salas, Fred S.

Currently, the Egyptian Atomic Energy Authority is designing a shallow-land disposal facility for low-level radioactive waste. To insure containment and prevent migration of radionuclides from the site, the use of a reactive backfill material is being considered. One material under consideration is hydroxyapatite, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, which has a high affinity for the sorption of many radionuclides. Hydroxyapatite has many properties that make it an ideal material for use as a backfill including low water solubility (K{sub sp}>10{sup -40}), high stability under reducing and oxidizing conditions over a wide temperature range, availability, and low cost. However, there is often considerable variation in the properties of apatites depending on source and method of preparation. In this work, we characterized and compared a synthetic hydroxyapatite with hydroxyapatites prepared from cattle bone calcined at 500 C, 700 C, 900 C and 1100 C. The analysis indicated the synthetic hydroxyapatite was similar in morphology to 500 C prepared cattle hydroxyapatite. With increasing calcination temperature the crystallinity and crystal size of the hydroxyapatites increased and the BET surface area and carbonate concentration decreased. Batch sorption experiments were performed to determine the effectiveness of each material to sorb uranium. Sorption of U was strong regardless of apatite type indicating all apatite materials evaluated. Sixty day desorption experiments indicated desorption of uranium for each hydroxyapatite was negligible.

More Details

Anionic sorbents for arsenic and technetium species

Larese, Kathleen C.; Larese, Kathleen C.; Zhao, Hongting Z.; Hasan, Ahmed H.; Bontchev, Ranko P.; Salas, Fred S.; Lucero, Daniel A.

Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption.

More Details

Containment of uranium in the proposed Egyptian geologic repository for radioactive waste using hydroxyapatite

Larese, Kathleen C.; Hasan, Ahmed H.; Larese, Kathleen C.; Headley, Thomas J.; Zhao, Hongting Z.; Salas, Fred S.

Currently, the Egyptian Atomic Energy Authority is designing a shallow-land disposal facility for low-level radioactive waste. To insure containment and prevent migration of radionuclides from the site, the use of a reactive backfill material is being considered. One material under consideration is hydroxyapatite, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, which has a high affinity for the sorption of many radionuclides. Hydroxyapatite has many properties that make it an ideal material for use as a backfill including low water solubility (K{sub sp} > 10{sup -40}), high stability under reducing and oxidizing conditions over a wide temperature range, availability, and low cost. However, there is often considerable variation in the properties of apatites depending on source and method of preparation. In this work, we characterized and compared a synthetic hydroxyapatite with hydroxyapatites prepared from cattle bone calcined at 500 C, 700 C, 900 C and 1100 C. The analysis indicated the synthetic hydroxyapatite was similar in morphology to 500 C prepared cattle hydroxyapatite. With increasing calcination temperature the crystallinity and crystal size of the hydroxyapatites increased and the BET surface area and carbonate concentration decreased. Batch sorption experiments were performed to determine the effectiveness of each material to sorb uranium. Sorption of U was strong regardless of apatite type indicating all apatite materials evaluated. Sixty day desorption experiments indicated desorption of uranium for each hydroxyapatite was negligible.

More Details

Formation of hydroxyapatite in soils using calcium citrate and sodium phosphate for control of strontium migration

Larese, Kathleen C.; Larese, Kathleen C.; Hasan, Ahmed H.; Zhao, Hongting Z.; Salas, Fred S.

{sup 90}Sr contamination is a major problem at several U.S. sites. At some sites, {sup 90}Sr has migrated deep underground making site remediation difficult. In this paper, we describe a novel method for precipitation of hydroxyapatite, a strong sorbent for {sup 90}Sr, in soil. The method is based on mixing a solution of calcium citrate and sodium phosphate in soil. As the indigenous soil microorganisms mineralize the citrate, the calcium is released and forms hydroxyapatite. Soil, taken from the Albuquerque desert, was treated with a sodium phosphate solution or a sodium phosphate/calcium citrate solution. TEM and EDS were used to identify hydroxyapatite with CO{sub 3}{sup 2-} substitutions, with a formula of (Ca{sub 4.8}Na{sub 0.2})[(PO{sub 4}){sub 2.8}(CO{sub 3}){sub 0.2}](OH), in the soil treated with the sodium phosphate/calcium citrate solution. Untreated and treated soils were used in batch sorption experiments for Sr uptake. Average Sr uptake was 19.5, 77.0 and 94.7% for the untreated soil, soil treated with sodium phosphate, and soil with apatite, respectively. In desorption experiments, the untreated soil, phosphate treated soil and apatite treated soil released an average of 34.2, 28.8 and 4.8% respectively. The results indicate the potential of forming apatite in soil using soluble reagents for retardation of radionuclide migration.

More Details

Sorption of Arsenic from Drinking Water to Mg(OH)2 Sorrel's Cements, and Zirconium Doped Materials

Zhao, Hongting Z.; Sanchez, Charles A.; Larese, Kathleen C.; Salas, Fred S.; Hasan, Ahmed H.; Lucero, Daniel A.; Larese, Kathleen C.

It was discovered that MgO or Mg(OH){sub 2} when it reacts with water is a very strong sorbent for arsenic. Distribution constants, or K{sub d} values, are as high as 1 x 10{sup 6} L/mole. In this work, Mg(OH){sub 2} and other compounds have been investigated as sorbents for arsenic and other contaminants. This work has resulted in several major accomplishments including: (1) design, construction, and testing of a pressure sand filter to remove Mg(OH){sub 2} after it has sorbed arsenic from water, (2) stabilization of Mg(OH){sub 2} as a Sorrel's cement against reaction with carbonate that results in MgCO{sub 3} formation decreasing the efficiency of Mg(OH){sub 2} to sorb arsenic, and (3) the development of a new, very promising sorbent for arsenic based on zirconium. Zirconium is an environmentally benign material found in many common products such as toothpaste. It is currently used in water treatment and is very inexpensive. In this work, zirconium has been bonded to activated carbon, zeolites, sand and montmorillonite. Because of its high charge in ionic form (+6), zirconium is a strong sorbent for many anions including arsenic. In equilibrium experiments arsenic concentrations in water were reduced from 200 ppb to less than 1 ppb in less than 1 minute of contact time. Additionally, analytical methods for detecting arsenic in water have also been investigated. Various analytical techniques including HPLC, AA and ICP-MS are used for quantification of arsenic. Due to large matrix interferences HPLC and AA techniques are not very selective and are time consuming. ICP-MS is highly efficient, requires a low sample volume and has a high tolerance for interferences. All these techniques are costly and require trained staff, and with the exception of ICP-MS, these methods cannot be used at low ppb arsenic concentration without using a pre-concentration step. An alternative to these traditional techniques is to use a colorimetric method based on leucocrystal violet dye interaction with iodine. This method has been adapted in our facility for quantifying arsenic concentrations down to 14 ppb.

More Details
14 Results
14 Results