Publications

95 Results
Skip to search filters

High Fidelity Modeling of Ionic Conduction in Solids

Zhou, Xiaowang Z.; Doty, Fred P.; Foster, Michael E.; Yang, Pin Y.; Fan, Hongyou F.

TlBr has the properties to become the leading radiation detection semiconductor. It has not yet been deployed due to a short lifetime of only hours to weeks. While the rapid structural deteriorations must come from ionic conduction under operating electrical fields, detailed aging mechanisms have not been understood. As a result, progress to extend lifetime has been limited despite extensive studies in the past. We have developed new atomistic simulation capabilities to enable study of ionic conduction under electrical fields. Our combined simulations and experiments indicate that dislocations in TlBr climb under electrical fields. This climb is the root cause for structural deterioration. Hence, we discovered new strengthening methods to reduce aging. Our new atomistic simulation approach can have broader impact on other Sandia programs including battery research. Our project results in 4 publications, a new invention, new LAMMPS capabilities, solution to mission relevant materials, and numerous presentations.

More Details

A modified Stillinger-Weber potential for TlBr and its polymorphic extension

Journal of Materials Science Research

Zhou, Xiaowang Z.; Foster, Michael E.; Jones, Reese E.; Doty, Fred P.; Yang, Pin Y.; Fan, Hongyou F.

TlBr is promising for g- and x- radiation detection, but suffers from rapid performance degradation under the operating external electric fields. To enable molecular dynamics (MD) studies of this degradation, we have developed a Stillinger-Weber type of TlBr interatomic potential. During this process, we have also addressed two problems of wider interests. First, the conventional Stillinger-Weber potential format is only applicable for tetrahedral structures (e.g., diamond-cubic, zinc-blende, or wurtzite). Here we have modified the analytical functions of the Stillinger-Weber potential so that it can now be used for other crystal structures. Second, past modifications of interatomic potentials cannot always be applied by a broad community because any new analytical functions of the potential would require corresponding changes in the molecular dynamics codes. Here we have developed a polymorphic potential model that simultaneously incorporates Stillinger-Weber, Tersoff, embedded-atom method, and any variations (i.e., modified functions) of these potentials. As a result, we have implemented this polymorphic model in MD code LAMMPS, and demonstrated that our TlBr potential enables stable MD simulations under external electric fields.

More Details

Accelerated discovery of elpasolite scintillators

Doty, Fred P.; Yang, Pin Y.; Zhou, Xiaowang Z.

Elpasolite scintillators are a large family of halides which includes compounds reported to meet the NA22 program goals of <3% energy resolution at 662 keV1. This work investigated the potential to produce quality elpasolite compounds and alloys of useful sizes at reasonable cost, through systematic experimental and computational investigation of crystal structure and properties across the composition space. Discovery was accelerated by computational methods and models developed previously to efficiently identify cubic members of the elpasolite halides, and to evaluate stability of anion and cation exchange alloys.

More Details

Advanced plastic scintillators for fast neutron discrimination

Feng, Patrick L.; Anstey, Mitchell A.; Doty, Fred P.; Mengesha, Wondwosen M.

The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.

More Details

Crystal Growth and Scintillation Properties of ${\rm Cs}_{2}{\rm NaGdBr}_{6}{:}{\rm Ce}^{3+}$

IEEE Transactions on Nuclear Science

Doty, Fred P.; Zhou, Xiaowang Z.; Deng, Haoran D.; Rodriguez, Marko A.

Single crystals of Cs2NaGdBr6 with different Ce+3 activator concentrations were grown by a two-zone Bridgman method. This new compound belongs to a large elpasolite halide (A2BLnX6) family. Many of these elpasolite compounds have shown high luminosity, good energy resolution and excellent proportionality in comparison to traditional scintillators such as CsI and NaI; therefore, they are particularly attractive for gamma-ray spectroscopy applications. This study investigated the scintillator properties of Cs2NaGdBr6:Ce+3 crystals as a new material for radiation detection. Special focus has been placed on the effects of activator concentration (0 to 50 mol.%) on the photoluminescence responses. Results of structural refinement, photoluminescence, radioluminescence, lifetime and proportionality measurements for this new compound are reported.

More Details

Elpasolite scintillators

Doty, Fred P.; Yang, Pin Y.; Zhou, Xiaowang Z.; Rodriguez, Marko A.

This work was funded by the U.S. Department of Energy Office of Nonproliferation Research to develop elpasolite materials, with an emphasis on high-atomic-number rare-earth elpasolites for gamma-ray spectrometer applications. Low-cost, high-performance gamma-ray spectrometers are needed for detection of nuclear proliferation. Cubic materials, such as some members of the elpasolite family (A2BLnX6; Ln-lanthanide and X-halogen), hold promise due to their high light output, proportionality, and potential for scale-up. Using both computational and experimental studies, a systematic investigation of the compositionstructureproperty relationships of these high-atomic-number elpasolite halides was performed. The results reduce the barrier to commercialization of large single crystals or transparent ceramics, and will facilitate economical scale-up of elpasolites for high-sensitivity gamma-ray spectroscopy.

More Details

Atomistic models for scintillator discovery

Doty, Fred P.; Yang, Pin Y.

A2BLnX6 elpasolites (A, B: alkali; Ln: lanthanide; X: halogen), LaBr3 lanthanum bromide, and AX alkali halides are three classes of the ionic compound crystals being explored for {gamma}-ray detection applications. Elpasolites are attractive because they can be optimized from combinations of four different elements. One design goal is to create cubic crystals that have isotropic optical properties and can be grown into large crystals at lower costs. Unfortunately, many elpasolites do not have cubic crystals and the experimental trial-and-error approach to find the cubic elpasolites has been prolonged and inefficient. LaBr3 is attractive due to its established good scintillation properties. The problem is that this brittle material is not only prone to fracture during services, but also difficult to grow into large crystals resulting in high production cost. Unfortunately, it is not always clear how to strengthen LaBr3 due to the lack of understanding of its fracture mechanisms. The problem with alkali halides is that their properties decay rapidly over time especially under harsh environment. Here we describe our recent progress on the development of atomistic models that may begin to enable the prediction of crystal structures and the study of fracture mechanisms of multi-element compounds.

More Details

Cerium doped elpasolite halide scintillators

Doty, Fred P.; Zhou, Xiaowang Z.; Noda, Frank T.

Low-cost, high-performance gamma-ray spectrometers are urgently needed for proliferation detection and homeland security. The cost and availability of large scintillators used in the spectrometer generally hinge on their mechanical property and crystal symmetry. Low symmetry, intrinsically brittle crystals, such as these emerging lanthanide halide scintillators, are particularly difficult to grow in large sizes due to the development of large anisotropic thermomechanical stresses during solidification process. Isotropic cubic scintillators, such as alkali halides, while affordable and can be produced in large sizes, are poor spectrometers due to severe nonproportional response and modest light yield. This work investigates and compares four new elpasolite based lanthanide halides, including Cs2LiLaBr6, Cs2NaLaBr6, Cs2LiLaI6, and Cs2NaLaI6, in terms of their crystal symmetry, characteristics of photoluminescence and optical quantum efficiency. The mechanical property and thermal expansion behavior of the cubic Cs2LiLaBr6 will be reported. The isotropic nature of this material has potential for scaled-up crystal growth, as well as the possibility of low-cost polycrystalline ceramic processing. In addition, the proportional response with gamma-ray energy of directionally solidified Cs2LiLaBr6 will be compared with workhorse alkali halide scintillators. The processing challenges associated with hot forged polycrystalline elpasolite based lanthanide halides will also be discussed.

More Details

Towards improved CZT crystals

Ward, Donald K.; Doty, Fred P.; Wong, Bryan M.; Zimmerman, Jonathan A.

Past experimental efforts to improve CZT crystals for gamma spectrometer applications have been focused on reducing micron-scale defects such as tellurium inclusions and precipitates. While these micron-scale defects are important, experiments have shown that the micron-scale variations in transport can be caused by the formation and aggregation of atomic-scale defects such as dislocations and point defect clusters. Moreover, dislocation cells have been found to act as nucleation sites that cause the formation of large precipitates. To better solve the uniformity problem of CZT, atomic-scale defects must be understood and controlled. To this end, we have begun to develop an atomistic model that can be used to reveal the effects of small-scale defects and to guide experiments for reducing both atomic- and micron-scale (tellurium inclusions and precipitates) defects. Our model will be based upon a bond order potential (BOP) to enable large-scale molecular dynamics simulations of material structures at a high-fidelity level that was not possible with alternative methods. To establish how BOP improves over existing approaches, we report here our recent work on the assessment of two representative literature CdTe interatomic potentials that are currently widely used: the Stillinger-Weber (SW) potential and the Tersoff-Rockett (TR) potential. Careful examinations of phases, defects, and surfaces of the CdTe system were performed. We began our study by using both potentials to evaluate the lattice constants and cohesive energies of various Cd, Te, and CdTe phases including dimer, trimer, chain, square, rhomboid, tetrahedron, diamond-cubic (dc), simple-cubic (sc), body-centered-cubic (bcc), face-centered cubic (fcc), hexagonal-close-packed (hcp), graphite-sheet, A8, zinc-blende (zb), wurtzite (wz), NaCl, CsCl, etc. We then compared the results with our calculations using the density functional theory (DFT) quantum mechanical method. We also evaluated the suitability of the two potentials to predict the surface reconstructions and surface energies, various defect configurations and defect energies (interstitials and voids), elastic constants, and melting temperatures of different phases. We found that both potentials predicted incorrect energy trends as compared with those predicted by the DFT method. Most seriously, both potentials predicted incorrect lowest energy phases. These studies clearly showed that the existing potentials are not sufficient for correctly predicting the charge transport properties of CdTe demonstrating the need for a new potential. We anticipate that our BOP method will overcome this problem and will accelerate the discovery of a synthesis approach to produce improved CZT crystals.

More Details

Development of atomistic models to aid the design of new scintillator materials

Doty, Fred P.; Yang, Pin Y.

The development of more reliable scintillator materials can significantly advance the gamma-ray detection technology. Scintillator materials such as lanthanum halides (e.g., LaBr{sub 3}, CsBr{sub 3}), elpasolites (e.g., Cs{sub 2}LiLaBr{sub 6}, Cs{sub 2}NaLaBr{sub 6}, and Cs{sub 2}LiLaI{sub 6}), and alkali halides (e.g., CsI, NaI) are extremely brittle. The fracture of the materials is often a problem causing the failure of the devices. Lanthanum halides typically have a hexagonal crystal structure. These materials have highly anisotropic thermal and mechanical properties, and therefore they are likely to fracture under cyclic thermal and mechanical loading conditions. For example, fracture of lanthanum halides is known to occur in the field. Fracture during synthesis also complicates the growth of large lanthanum halide single crystals needed for sensitive radiation detection, and accounts for the high production cost of these materials. Elpasolites can have both cubic and non-cubic crystal structures depending on the constituent elements and composition of the compounds. This provides an opportunity to design cubic elpasolites with more isotropic properties and therefore improved mechanical performances. However, the design of an optimized cubic elpasolite crystal remains elusive because there is a tremendous number of possible elpasolites and the design criterion for cubic crystals is not clear. Alkali halides have cubic crystal structures. Consequently, large CsI and NaI crystals have been grown and used in devices. However, these materials suffer from an aging problem, i.e., the properties decay rapidly over time especially under harsh environment. Unfortunately, the fundamental mechanisms of this aging have not been understood and the path to improve the alkali halide-based scintillators is not developed. Clearly, improved scintillator materials can be achieved via strengthened/toughened lanthanum halides, optimized cubic elpasolites, or new alkali halide-based crystals that are more resistant to aging. Without a fundamental understanding of the atomic origins of the mechanical and the thermodynamic properties of materials, past experimental efforts to develop improved scintillator materials have been prolonged. Here we report our recent progress on the development of atomistic models that can be used to accelerate the discovery of new scintillator materials with improved properties. First, we have developed a novel embedded-ion method interatomic potential approach that analytically addresses the variable charge interactions between atoms in ionic compound material systems. Based on this potential, molecular dynamics simulations have been used to study the mechanical properties of LaBr3 including slip systems, dislocation core structures, and material strength. We have also developed an atomistic model that can already be used to predict crystal structures and to derive crystal stability rules for alkali halides. This model is under further development for prediction of crystal structures of elpasolites. These efforts will facilitate the design of better scintillator materials.

More Details

Plastic neutron detectors

Doty, Fred P.; King, Michael K.

This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in photoresponse with increasing stretch ratio. Other additives examined, including small molecules and cosolvents, did not cause any significant increase in photoresponse. Finally, we discovered an inverse-geometric particle track effect wherein increased track lengths created by tilting the detector off normal incidence resulted in decreased signal collection. This is interpreted as a trap-filling effect, leading to increased carrier mobility along the particle track direction. Estimated collection efficiency along the track direction was near 20 electrons/micron of track length, sufficient for particle counting in 50 micron thick films.

More Details

Radioluminescence and scintillation results of horizontal gradient freeze grown aliovalently-doped CeBr3

Proposed for publication in IEEE Transactions on Nuclear Science.

Doty, Fred P.

Strengthening the crystal lattice of lanthanide halides, which are brittle, anisotropic, ionic crystals, may prove to increase the availability and ruggedness of these scintillators for room-temperature gamma-ray spectroscopy applications. Eight aliovalent dopants for CeBr{sub 3} were explored in an effort to find the optimal aliovalent strengthening agent. Eight dopants, CaBr{sub 2}, SrBr{sub 2}, BaBr{sub 2}, ZrBr{sub 4}, HfBr{sub 4}, ZnBr{sub 2}, CdBr[sub 2}, and PbBr{sub 2}, were explored at two levels of doping, 500 and 1000 ppm. From each ingot, samples were harvested for radioluminescence spectrum measurement and scintillation testing. Of the eight dopants explored, only BaBr{sub 2} and PbBr{sub 2} were found to clearly decrease total light yield. ZnBr{sub 2} and CdBr{sub 2} dopants both affected the radioluminescence emission spectrum very little as compared to undoped CeBr{sub 3}. HfBr{sub 2}- and ZnBr{sub 4}-doped CeBr{sub 3} exhibited the highest light yields.

More Details
95 Results
95 Results