Publications

108 Results
Skip to search filters

Proceedings of the 7th US/German Workshop on Salt Repository Research, Design, and Operation

Hansen, Francis D.; Steininger, Walter S.; Bollingerfehr, Wilhelm B.

The 7th US/German Workshop on Salt Repository Research, Design, and Operation was held in Washington, DC on September 7-9, 2016. Over fifty participants representing governmental agencies, internationally recognized salt research groups, universities, and private companies helped advance the technical basis for salt disposal of radioactive waste. Representatives from several United States federal agencies were able to attend, including the Department of Energy's Office of Environmental Management and Office of Nuclear Energy, the Environmental Protection Agency, the Nuclear Regulatory Commission, and the Nuclear Waste Technical Review Board. A similar representation from the German ministries showcased the covenant established in a Memorandum of Understanding executed between the United States and Germany in 2011. The US/German workshops' results and activities also contribute significantly to the Nuclear Energy Agency Salt Club repository research agenda.

More Details

FY16 Summary Report: Participation in the KOSINA Project

Matteo, Edward N.; Hansen, Francis D.

Salt formations represent a promising host for disposal of nuclear waste in the United States and Germany. Together, these countries provided fully developed safety cases for bedded salt and domal salt, respectively. Today, Germany and the United States find themselves in similar positions with respect to salt formations serving as repositories for heat-generating nuclear waste. German research centers are evaluating bedded and pillow salt formations to contrast with their previous safety case made for the Gorleben dome. Sandia National Laboratories is collaborating on this effort as an Associate Partner, and this report summarizes that teamwork. Sandia and German research groups have a long-standing cooperative approach to repository science, engineering, operations, safety assessment, testing, modeling and other elements comprising the basis for salt disposal. Germany and the United States hold annual bilateral workshops, which cover a spectrum of issues surrounding the viability of salt formations. Notably, recent efforts include development of a database for features, events, and processes applying broadly and generically to bedded and domal salt. Another international teaming activity evaluates salt constitutive models, including hundreds of new experiments conducted on bedded salt from the Waste Isolation Pilot Plant. These extensive collaborations continue to build the scientific basis for salt disposal. Repository deliberations in the United States are revisiting bedded and domal salt for housing a nuclear waste repository. By agreeing to collaborate with German peers, our nation stands to benefit by assurance of scientific position, exchange of operational concepts, and approach to elements of the safety case, all reflecting cost and time efficiency.

More Details

Intermediate Scale Testing Recommendation Report

Hansen, Francis D.; Sobolik, Steven R.; Stauffer, Phil S.

A summary of recommendations for near-term intermediate-scale testing pertaining to a salt repository is provided in this report. Each proposal was asked to implement a phased progression, initiating with test plan production in FY 2017 and early-stage testing, if possible. Beyond 2017, testing is anticipated to progress to an underground setting and involve intermediate-scale field activities. Each test concept was presented at the June 6th 2016 meeting in Las Vegas NV and a team of DOE-NE, DOE-EM, and National Laboratory staff discussed the rnerits of each proposal. Discussions among managers and researchers in the weeks following the meeting led to selection of a path forward for phased testing that includes a series of small diarneter borehole tests designed to illuminate thermomechanical processes and potential vapor and brine transport. These tests are intended to be implemented at the WIPP facility and involve collaboration between SNL, LANL, and LBL. This document summarizes the test concepts generated by the te s of researchers and decisions made subsequent to the June 6th meeting.

More Details

Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.

More Details

Characterization of Reconsolidated Crushed Salt from the BAMBUS Site

Hansen, Francis D.

Observational petrofabrics, thermal, mechanical, and hydrological measurements were made on reconsolidated salt samples extracted from the field site in which a study called Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt was conducted. Similar characterization was completed more than a decade ago, so this work furthers previous measurements after sustained consolidation in situ . Porosity determined by traditional point-counting on polished sections and helium porosimeter methods ranged from 20-25% with consolidation governed by brittle processes, as evidence of fluid-aided, grain-boundary processes was rarely observed. Thermal conductivity in the range of 2.3 W /( m * K ) is consistent for granular halite in this porosity range. Gas flow measurements yielded permeability of the order of 5e -13 m 2 . Pressure-sensitive compressive strengths at 0.5, 1.0, and 2.0 MPa confining pressure were 8, 9, and 14 MPa, respectively, with apparent elastic moduli increase with deformation.

More Details

Proceedings of the 6th US/German Workshop on Salt Repository Research, Design, and Operation

Hansen, Francis D.; Steininger, W.,K.; Bollingerfehr, DBE T.

The 6th US/German Workshop on Salt Repository Research, Design, and Operation was held in Dresden. Germany on September 7-9, 2015. Over seventy participants helped advance the technical basis for salt disposal of radioactive waste. The number of collaborative efforts continues to grow and to produce useful documentation, as well as to define the state of the art for research areas. These Proceedings are divided into Chapters, and a list of authors is included in the Acknowledgement Section. Also in this document are the Technical Agenda, List of Participants, Biographical Information, Abstracts, and Presentations. Proceedings of all workshops and other pertinent information are posted on websites hosted by Sandia National Laboratories and the Nuclear Energy Agency Salt Club. The US/German workshops provide continuity for long-term research, summarize and publish status of mature areas, and develop appropriate research by consensus in a workshop environment. As before, major areas and findings are highlighted, which constitute topical Chapters in these Proceedings. In total, the scientific breadth is substantial and while not all subject matter is elaborated into chapter format, all presentations and abstracts are published in this document. In the following Proceedings, six selected topics are developed in detail.

More Details

FY15 Report on Thermomechanical Testing

Hansen, Francis D.; Buchholz, Stuart A.; Author, No A.

Sandia is participating in the third phase of a United States (US)-German Joint Project that compares constitutive models and simulation procedures on the basis of model calculations of the thermomechanical behavior and healing of rock salt (Salzer et al. 2015). The first goal of the project is to evaluate the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Among the numerical modeling tools required to address this are constitutive models that are used in computer simulations for the description of the thermal, mechanical, and hydraulic behavior of the host rock under various influences and for the long-term prediction of this behavior. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure disposal of radioactive wastes in rock salt. Results of the Joint Project may ultimately be used to make various assertions regarding stability analysis of an underground repository in salt during the operating phase as well as long-term integrity of the geological barrier in the post-operating phase A primary evaluation of constitutive model capabilities comes by way of predicting large-scale field tests. The Joint Project partners decided to model Waste Isolation Pilot Plant (WIPP) Rooms B & D which are full-scale rooms having the same dimensions. Room D deformed under natural, ambient conditions while Room B was thermally driven by an array of waste-simulating heaters (Munson et al. 1988; 1990). Existing laboratory test data for WIPP salt were carefully scrutinized and the partners decided that additional testing would be needed to help evaluate advanced features of the constitutive models. The German partners performed over 140 laboratory tests on WIPP salt at no charge to the US Department of Energy (DOE).

More Details

Gas flow measurements of consolidating crushed salt

49th US Rock Mechanics / Geomechanics Symposium 2015

Bauer, Stephen J.; Broome, Scott T.; Hansen, Francis D.; Lampe, B.; Mills, M.; Stormont, J.

Crushed salt is being considered as a backfill material in the event of a salt repository for high level nuclear waste. The thermal-mechanical-hydrological properties of crushed salt as it reconsolidates in response to pressure and temperature changes are therefore important. An experimental system to measure gas flow through consolidating crushed salt at elevated temperature and pressure has been developed and tested. An experiment completed at 250°C, and hydrostatic pressures to 20 MPa, compacted a crushed salt sample from ∼40 percent porosity to near zero porosity. For this consolidation history, apparent permeability decreased from greater than 10-12 m2 to ∼10-22 m2.

More Details

Capturing early evolution of salt openings

49th US Rock Mechanics / Geomechanics Symposium 2015

Hansen, Francis D.; Howard, C.; Kuhlman, Kristopher L.; Holland, John H.

In situ tests implemented in a research facility mined from salt deposits, if planned appropriately, provide an opportunity to characterize the host rock before, during, and after excavation of test rooms. Characterization of the test bed is essential to interpret structural deformation, creation and evolution of the disturbed rock zone, and measurement of first-order hydromechanical properties as the salt evolves from an impermeable undisturbed state to a more-transmissive damaged state. The strategy expounded upon in this paper describes recommended geophysical measurements to characterize the initial state of a potential test bed and its evolution over the course of a field test. Discussion includes what measurements could be made, why the measurements would be made, how they are made, and how accurately they need to be made. Quantifiable parameters will establish field-scale boundary conditions and data quality objectives to characterize the test bed in an underground salt research facility.

More Details

Salt reconsolidation applied to repository seals

Mechanical Behavior of Salt VIII - Proceedings of the Conference on Mechanical Behavior of Salt, SALTMECH VIII

Hansen, Francis D.; Popp, T.; Wieczorek, K.; Stührenberg, D.

An excellent scientific understanding of salt reconsolidation mechanisms has been established from experimental results and observational microscopy. Thermal, mechanical, and fluid transport properties of reconsolidating granular salt are fundamental to the design, analysis, and performance assessment of potential salt repositories for heat-generating nuclear waste. Application of acquired knowledge to construction techniques could potentially achieve high-performance seal properties upon construction or during the repository operational period, which lessens reliance on modeling to argue for evolving engineering characteristics and attainment of sealing functions at some future time. The robust database could be augmented by select reconsolidation experiments with admixtures and analogue studies with appropriate documentation of microprocesses.

More Details

Geomechanics issues regarding heat-generating waste disposal in salt

49th US Rock Mechanics / Geomechanics Symposium 2015

Hansen, Francis D.; Popp, T.

With an abundance of scientific information in hand, what are the remaining geomechanics issues for a salt repository for heat-generating nuclear waste disposal? The context of this question pertains to the development of a license application, rather than an exploration of the entire breadth of salt research. The technical foundation supporting a licensed salt repository has been developed in the United States and Germany since the 1960s. Although the level of effort has been inconsistent and discontinuous over the years, site characterization activities, laboratory testing, field-scale experiments, and advanced computational capability provide information and tools required for a license application, should any nation make that policy decision. Ample scientific bases exist to develop a safety case in the event a site is identified and governing regulations promulgated. Some of the key remaining geomechanics issues pertain to application of advanced computational tools to the repository class of problems, refinement of constitutive models and their validation, reduction of uncertainty in a few areas, operational elements, and less tractable requirements that may arise from regulators and stakeholders. This realm of issues as they pertain to salt repositories is being addressed in various research, development and demonstration activities in the United States and Germany, including extensive collaborations. Many research areas such as constitutive models and performance of geotechnical barriers have industry applications beyond repositories. And, while esoteric salt-specific phenomenology and micromechanical processes remain of interest, they will not be reviewed here. The importance of addressing geomechanics issues and their associated prioritization are a matter of discussion, though the discriminating criterion for considerations in this paper is a demonstrable tie to the salt repository safety case.

More Details

Granular Salt Summary: Reconsolidation Principles and Applications

Hansen, Francis D.; Popp, Till P.; Wieczorek, Klaus W.; Stührenberg, Dieter S.

The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

More Details

Coupled thermal-hydrological-mechanical-chemical analyses of a repository in clay/shale for high-level waste

45th US Rock Mechanics / Geomechanics Symposium

Stone, C.M.; Martinez, Mario J.; Dewers, Thomas D.; Hansen, Francis D.; Hardin, Ernest H.; Argüello, J.G.; Holland, J.F.

This paper describes the modeling efforts undertaken during a recently completed feasibility study of a generic shale repository for disposal of high-level radioactive waste within the United States. A coupled thermal-hydrological-mechanical-chemical analysis of the shale repository was performed using the SIERRA Mechanics code developed at Sandia National Laboratories. Because U.S. efforts have focused on the volcanic tuff site at Yucca Mountain, radioactive waste disposal in U.S. shale formations has not been considered for many years. However, advances in multi-physics computational modeling and research into clay mineralogy continue to improve the scientific basis for assessing nuclear waste repository performance in such formations. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. © 2011 ARMA, American Rock Mechanics Association.

More Details

Repository performance confirmation

Hansen, Francis D.

Repository performance confirmation links the technical bases of repository science and societal acceptance. This paper explores the myriad aspects of what has been labeled performance confirmation in U.S. programs, which involves monitoring as a collection of distinct activities combining technical and social significance in radioactive waste management. This paper is divided into four parts: (1) A distinction is drawn between performance confirmation monitoring and other testing and monitoring objectives; (2) A case study illustrates confirmation activities integrated within a long-term testing and monitoring strategy for Yucca Mountain; (3) A case study reviews compliance monitoring developed and implemented for the Waste Isolation Pilot Plant; and (4) An approach for developing, evaluating and implementing the next generation of performance confirmation monitoring is presented. International interest in repository monitoring is exhibited by the European Commission Seventh Framework Programme 'Monitoring Developments for Safe Repository Operation and Staged Closure' (MoDeRn) Project. The MoDeRn partners are considering the role of monitoring in a phased approach to the geological disposal of radioactive waste. As repository plans advance in different countries, the need to consider monitoring strategies within a controlled framework has become more apparent. The MoDeRn project pulls together technical and societal experts to assimilate a common understanding of a process that could be followed to develop a monitoring program. A fundamental consideration is the differentiation of confirmation monitoring from the many other testing and monitoring activities. Recently, the license application for Yucca Mountain provided a case study including a technical process for meeting regulatory requirements to confirm repository performance as well as considerations related to the preservation of retrievability. The performance confirmation plan developed as part of the Yucca Mountain license application identified a broad suite of monitoring activities. A revision of the plan was expected to winnow the number of activities down to a manageable size. As a result, an objective process for the next stage of performance confirmation planning was developed as an integral part of an overarching long-term testing and monitoring strategy. The Waste Isolation Pilot Plant compliance monitoring program at once reflects its importance to stakeholders while demonstrating adequate understanding of relevant monitoring parameters. The compliance criteria were stated by regulation and are currently monitored as part of the regulatory rule for disposal. At the outset, the screening practice and parameter selection were not predicated on a direct or indirect correlation to system performance metrics, as was the case for Yucca Mountain. Later on, correlation to performance was established, and the Waste Isolation Pilot Plant continues to monitor ten parameters originally identified in the compliance certification documentation. The monitoring program has proven to be effective for the technical intentions and societal or public assurance. The experience with performance confirmation in the license application process for Yucca Mountain helped identify an objective, quantitative methodology for this purpose. Revision of the existing plan would be based on findings of the total system performance assessment. Identification and prioritization of confirmation activities would then derive from performance metrics associated with performance assessment. Given the understanding of repository performance confirmation, as reviewed in this paper, it is evident that the performance confirmation program for the Yucca Mountain project could be readily re-engaged if licensing activities resumed.

More Details

Granite disposal of U.S. high-level radioactive waste

Mariner, Paul M.; Lee, Joon L.; Hardin, Ernest H.; Hansen, Francis D.; Freeze, Geoffrey A.; Lord, Anna S.; Goldstein, Barry G.

This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.

More Details

Salt disposal of heat-generating nuclear waste

Hansen, Francis D.; Leigh, Christi D.

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

More Details

Shale disposal of U.S. high-level radioactive waste

Hansen, Francis D.; Gaither, Katherine N.; Sobolik, Steven R.; Cygan, Randall T.; Hardin, Ernest H.; Rechard, Robert P.; Freeze, Geoffrey A.; Sassani, David C.; Brady, Patrick V.; Stone, Charles M.; Martinez, Mario J.; Dewers, Thomas D.

This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within a few meters of the repository, that can be reasonably characterized. Within a few centuries after waste emplacement, overburden pressures will seal fractures, resaturate the dehydrated zones, and provide a repository setting that strongly limits radionuclide movement to diffusive transport. Coupled hydrogeochemical transport calculations indicate maximum extents of radionuclide transport on the order of tens to hundreds of meters, or less, in a million years. Under the conditions modeled, a shale repository could achieve total containment, with no releases to the environment in undisturbed scenarios. The performance analyses described here are based on the assumption that long-term standards for disposal in clay/shale would be identical in the key aspects, to those prescribed for existing repository programs such as Yucca Mountain. This generic repository evaluation for shale is the first developed in the United States. Previous repository considerations have emphasized salt formations and volcanic rock formations. Much of the experience gained from U.S. repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, is applied here to scoping analyses for a shale repository. A contemporary understanding of clay mineralogy and attendant chemical environments has allowed identification of the appropriate features, events, and processes to be incorporated into the analysis. Advanced multi-physics modeling provides key support for understanding the effects from coupled processes. The results of the assessment show that shale formations provide a technically advanced, scientifically sound disposal option for the U.S.

More Details

Salt rock mechanics - prediction vs. performance - WIPP Provides Answers

Sandia journal manuscript; Not yet accepted for publication

Hansen, Francis D.

In the years leading up to the Compliance Certification Application in 1996, scientists working on the Waste Isolation Pilot Plant (WIPP) conducted an extensive suite of laboratory and field experiments. Additionally, full-scale experiments in the underground established performance standards and expectations, while the fundamental science of salt deformation was explored in the laboratory. Field experiments included several at elevated temperature to ascertain salt response under conditions anticipated for the operating repository, which at the outset included heat-generating defense waste. Simulations and predictions of the field tests were made using finite element computer models that incorporated sophisticated models for salt deformation. Parameters for the salt model were derived from laboratory experiments on natural salt extracted from the repository horizon. All of these science investigations provided confidence in the predicted behavior of the salt at WIPP. Lastly, on this tenth anniversary of WIPP operations, this paper recounts some of the geomechanics investigations conducted during site characterization, highlights three key geomechanics issues experienced over the decade of operations, and concludes that our basic understanding of salt mechanics portends a promising future for radioactive waste disposal in salt.

More Details

WIPP disposal room closure calculations for various waste inventories

Proceedings of the 41st U.S. Rock Mechanics Symposium - ARMA's Golden Rocks 2006 - 50 Years of Rock Mechanics

Park, Y.B.; Hansen, Francis D.

This paper develops a series of room closure and porosity surface calculations, which are used to assess performance of the Waste Isolation Pilot Plant. The concept of a porosity surface comprises calculation of room closure as salt creep is resisted by back stress created by the waste packages and by hypothetical gas generation within the rooms. The physical and mechanical characteristics of some of the waste packaging are appreciably different from the assumed waste upon which the original compliance was based and approved. These analyses provide insight into the structural response of a room full of various wastes, including the influence of the waste in the absence of gas generation, as well as the lack of influence on room closure when gas generation is modeled. All of the underlying assumptions pertaining to the original compliance certification including the same finite element code are implemented; only the material parameters describing the more robust waste packages are changed from the certified baseline. As modeled, more rigid waste tends to hold open the rooms and create relatively more void space in the underground than identical calculations run on the standard waste packages, which underpin the compliance certification. Several porosity surfaces were developed to cover a range of possible packaging. Copyright 2006, ARMA, American Rock Mechanics Association.

More Details

Determination of the Porosity Surfaces of the Disposal Room Containing Various Waste Inventories for WIPP PA

Park, Byoung P.; Hansen, Francis D.

This report develops a series of porosity surfaces for the Waste Isolation Pilot Plant. The concept of a porosity surface was developed for performance assessment and comprises calculation of room closure as salt creep processes are mitigated by gas generation and back stress created by the waste packages within the rooms. The physical and mechanical characteristics of the waste packaging that has already been disposed--such as the pipe overpack--and new waste packaging--such as the advanced mixed waste compaction--are appreciably different than the waste form upon which the original compliance was based and approved. This report provides structural analyses of room closure with various waste inventories. All of the underlying assumptions pertaining to the original compliance certification including the same finite element code are implemented; only the material parameters describing the more robust waste packages are changed from the certified baseline. As modeled, the more rigid waste tends to hold open the rooms and create relatively more void space in the underground than identical calculations run on the standard waste packages, which underpin the compliance certification. The several porosity surfaces quantified within this report provide possible ranges of pressure and porosity for performance assessment analyses.3 Intentionally blank4 AcknowledgementsThis research is funded by WIPP programs administered by the U.S. Department of Energy. The authors would like to acknowledge the valuable contributions to this work provided by others. Dr. Joshua S. Stein helped explain the hand off between these finite element porosity surfaces and implementation in the performance calculations. Dr. Leo L. Van Sambeek of RESPEC Inc. helped us understand the concepts of room closure under the circumstances created by a rigid waste inventory. Dr. T. William Thompson and Tom W. Pfeifle provided technical review and Mario J. Chavez provided a Quality Assurance review. The paper has been improved by these individuals.Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94Al850005 Intentionally Blank6

More Details

Simulations of the pipe overpack to compute constitutive model parameters for use in WIPP room closure calculations

Park, Byoung P.; Hansen, Francis D.

The regulatory compliance determination for the Waste Isolation Pilot Plant includes the consideration of room closure. Elements of the geomechanical processes include salt creep, gas generation and mechanical deformation of the waste residing in the rooms. The WIPP was certified as complying with regulatory requirements based in part on the implementation of room closure and material models for the waste. Since the WIPP began receiving waste in 1999, waste packages have been identified that are appreciably more robust than the 55-gallon drums characterized for the initial calculations. The pipe overpack comprises one such waste package. This report develops material model parameters for the pipe overpack containers by using axisymmetrical finite element models. Known material properties and structural dimensions allow well constrained models to be completed for uniaxial, triaxial, and hydrostatic compression of the pipe overpack waste package. These analyses show that the pipe overpack waste package is far more rigid than the originally certified drum. The model parameters developed in this report are used subsequently to evaluate the implications to performance assessment calculations.

More Details

The disturbed rock zone at the Waste Isolation Pilot Plant

Hansen, Francis D.; Hansen, Francis D.

The Disturbed Rock Zone constitutes an important geomechanical element of the Waste Isolation Pilot Plant. The science and engineering underpinning the disturbed rock zone provide the basis for evaluating ongoing operational issues and their impact on performance assessment. Contemporary treatment of the disturbed rock zone applied to the evaluation of the panel closure system and to a new mining horizon improves the level of detail and quantitative elements associated with a damaged zone surrounding the repository openings. Technical advancement has been realized by virtue of ongoing experimental investigations and international collaboration. The initial portion of this document discusses the disturbed rock zone relative to operational issues pertaining to re-certification of the repository. The remaining sections summarize and document theoretical and experimental advances that quantify characteristics of the disturbed rock zone as applied to nuclear waste repositories in salt.

More Details

Parameter justification report for DRSPALL

Lord, David L.; Hansen, Francis D.; Pfeifle, Tom P.; Lord, David L.

A new conceptual model has been developed for drilling intrusion into the Waste Isolation Pilot Plant. The model is implemented in a new code, DRSPALL, which captures the physics of the spallings release phenomena. The new conceptual model and code required parallel development of a family of parameters that adequately describe the properties of the system. This report introduces the various parameters implemented in the new spallings model, and provides justification for values and ranges of new parameters not currently in the performance assessment database.

More Details

From science to compliance: Geomechanics studies of the Waste Isolation Pilot Plant

Hansen, Francis D.

Mechanical and hydrological properties of salt provide excellent bases for geological isolation of hazardous materials. Regulatory certification of the Waste Isolation Pilot Plant (WIPP) testifies to the nearly ideal characteristics of bedded salt deposits in southeast New Mexico. The WIPP history includes decades of testing and scientific investigations, which have resulted in a comprehensive understanding of salt's mechanical deformational and hydrological properties over an applicable range of stresses and temperatures. Comprehensive evaluation of salt's favorable characteristics helped demonstrate regulatory compliance and ensure isolation of radioactive waste placed in a salt geological setting.

More Details

Review and perspectives on spallings release models in the 1996 performance assessment for the Waste Isolation Pilot Plant

Reliability Engineering and System Safety

Knowles, M.K.; Hansen, Francis D.; Thompson, T.W.; Schatz, J.F.; Gross, M.

The Waste Isolation Pilot Plant was licensed for disposal of transuranic wastes generated by the US Department of Energy. The facility consists of a repository mined in a bedded salt formation, approximately 650 m below the surface. Regulations promulgated by the US Environmental Protection Agency require that performance assessment calculations for the repository include the possibility that an exploratory drilling operation could penetrate the waste disposal areas at some time in the future. Release of contaminated solids could reach the surface during a drilling intrusion. One of the mechanisms for release, known as spallings, can occur if gas pressures in the repository exceed the hydrostatic pressure of a column of drilling mud. Calculation of solids releaes for spallings depends critically on the conceptual models for the waste, for the spallings process, and assumptions regarding driller parameters and practices. This paper presents a review of the evolution of these models during the regulatory review of the Compliance Certification Application for the repository. A summary and perspectives on the implementation of conservative assumptions in model development are also provided.

More Details
108 Results
108 Results