Publications

12 Results
Skip to search filters

Correlating structure and transport behavior in Li+ and O2 containing pyrrolidinium ionic liquids

Physical Chemistry Chemical Physics

Gittleson, Forrest S.; Ward, Donald K.; Jones, Reese E.; Zarkesh, Ryan A.; Sheth, Tanvi; Foster, Michael E.

Ionic liquids are a unique class of materials with several potential applications in electrochemical energy storage. When used in electrolytes, these highly coordinating solvents can influence device performance through their high viscosities and strong solvation behaviors. In this work, we explore the effects of pyrrolidinium cation structure and Li+ concentration on transport processes in ionic liquid electrolytes. We present correlated experimental measurements and molecular simulations of Li+ mobility and O2 diffusivity, and connect these results to dynamic molecular structural information and device performance. In the context of Li-O2/Li-air battery chemistries, we find that Li+ mobility is largely influenced by Li+-anion coordination, but that both Li+ and O2 diffusion may be affected by variations of the pyrrolidinium cation and Li+ concentration.

More Details

Non-Faradaic Li+ Migration and Chemical Coordination across Solid-State Battery Interfaces

Nano Letters

Gittleson, Forrest S.; El Gabaly Marquez, Farid E.

Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode-electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO2-LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to the electrolyte, which reduces reversible cathodic capacity by ∼15%. Inserting a thin, ion-conducting LiNbO3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.

More Details

Exploring a wider range of Mg-Ca-Zn metallic glass as biocompatible alloys using combinatorial sputtering

Chemical Communications

Li, Jinyang; Gittleson, Forrest S.; Liu, Yanhui; Liu, Jingbei; Loye, Ayomiposi M.; McMillon-Brown, Lyndsey; Kyriakides, Themis R.; Schroers, Jan; Taylor, André D.

In order to bypass the limitation of bulk metallic glasses fabrication, we synthesized thin film metallic glasses to study the corrosion characteristics of a wide atomic% composition range, Mg(35.9-63%)Ca(4.1-21%)Zn(17.9-58.3%), in simulated body fluid. We highlight a clear relationship between Zn content and corrosion current such that Zn-medium metallic glasses exhibit minimum corrosion. In addition, we found higher Zn content leads to a poor in vitro cell viability. These results showcase the benefit of evaluating a larger alloy compositional space to probe the limits of corrosion resistance and prescreen for biocompatible applications.

More Details

Assessing electrolyte transport properties with molecular dynamics

Journal of the Electrochemical Society

Jones, Reese E.; Ward, D.K.; Gittleson, Forrest S.; Foster, M.E.

In this work we use estimates of ionic transport properties obtained from molecular dynamics to rank lithium electrolytes of different compositions. We develop linear response methods to obtain the Onsager diffusivity matrix for all chemical species, its Fickian counterpart, and the mobilities of the ionic species. We apply these methods to the well-studied propylene carbonate/ethylene carbonate solvent with dissolved LiBF4 and O2. The results show that, over a range of lithium concentrations and carbonate mixtures, trends in the transport coefficients can be identified and optimal electrolytes can be selected for experimental focus; however, refinement of these estimation techniques is necessary for a reliable ranking of a large set of electrolytes.

More Details

Oxygen solubility and transport in Li-air battery electrolytes: Establishing criteria and strategies for electrolyte design

Energy and Environmental Science

Gittleson, Forrest S.; Jones, Reese E.; Ward, Donald K.; Foster, Michael E.

Li-air or Li-oxygen batteries promise significantly higher energies than existing commercial battery technologies, yet their development has been hindered by a lack of suitable electrolytes. In this article, we evaluate the physical properties of varied electrolyte compositions to form generalized criteria for electrolyte design. We show that oxygen transport through non-aqueous electrolytes has a critical impact on the discharge rate and capacity of Li-air batteries. Through experiments and molecular dynamics simulations, we highlight that the choice of salt species and concentration have an outsized influence on oxygen solubility, while solvent choice is the major influence on oxygen diffusivity. The stability of superoxide reaction intermediates, key to the oxygen reduction mechanism, is also affected by variations in salt concentration and the choice of solvent. The importance of reactant transport is confirmed through Li-air cell discharge, which demonstrates good agreement between the observed and calculated mass transport-limited currents. These results showcase the impact of electrolyte composition on transport in metal-air batteries and provide guiding principles and simulation-based tools for future electrolyte design.

More Details

Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

Nature Communications

Ryu, Won H.; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage.

More Details
12 Results
12 Results