Publications

3 Results
Skip to search filters

Ultra-lightweight telescope with MEMS adaptive optic for distortion correction

Spahn, Olga B.; Dagel, Daryl D.; Mani, Seethambal S.; Sweatt, W.C.; Turner, Fawn R.; Grine, Alejandro J.; Adams, David P.; Resnick, Paul J.; Cowan, William D.

Recent world events have underscored the need for a satellite based persistent global surveillance capability. To be useful, the satellite must be able to continuously monitor objects the size of a person anywhere on the globe and do so at a low cost. One way to satisfy these requirements involves a constellation of satellites in low earth orbit capable of resolving a spot on the order of 20 cm. To reduce cost of deployment, such a system must be dramatically lighter than a traditional satellite surveillance system with a high spatial resolution. The key to meeting this requirement is a lightweight optics system with a deformable primary and secondary mirrors and an adaptive optic subsystem correction of wavefront distortion. This proposal is concerned with development of MEMS micromirrors for correction of aberrations in the primary mirror and improvement of image quality, thus reducing the optical requirements on the deployable mirrors. To meet this challenge, MEMS micromirrors must meet stringent criteria on their performance in terms of flatness, roughness and resolution of position. Using Sandia's SUMMIT foundry which provides the world's most sophisticated surface MEMS technology as well as novel designs optimized by finite element analysis will meet severe requirements on mirror travel range and accuracy.

More Details

An Investigation into the Response of a Micro Electro Mechanical Compound Pivot Mirror Using Finite Element Modeling

Turner, Fawn R.; Dohner, Jeffrey L.

This report is a presentation of modeling and simulation work for analyzing three designs of Micro Electro Mechanical (MEM) Compound Pivot Mirrors (CPM). These CPMs were made at Sandia National Laboratories using the SUMMiT{trademark} process. At 75 volts and above, initial experimental analysis of fabricated mirrors showed tilt angles of up to 7.5 degrees for one design, and 5 degrees for the other two. Nevertheless, geometric design models predicted higher tilt angles. Therefore, a detailed study was conducted to explain why lower tilt angles occurred and if design modifications could be made to produce higher tilt angles at lower voltages. This study showed that the spring stiffnesses of the CPMs were too great to allow for desired levels of rotation at lower levels of voltage. To produce these lower stiffnesses, a redesign is needed.

More Details
3 Results
3 Results