Publications

3 Results
Skip to search filters

Advances in pulsed-power-driven radiography system design

Maenchen, John E.; Cordova, S.; Bohlken, Fawn A.; Hahn, Kelly D.; Jaramillo, Deanna M.; Molina, I.; Portillo, Salvador; Madrid, Elizabeth A.; Rovang, Dean C.; Sceiford, Matthew S.

Flash x-ray radiography has undergone a transformation in recent years with the resurgence of interest in compact, high intensity pulsed-power-driven electron beam sources. The radiographic requirements and the choice of a consistent x-ray source determine the accelerator parameters, which can be met by demonstrated Induction Voltage Adder technologies. This paper reviews the state of the art and the recent advances which have improved performance by over an order of magnitude in beam brightness and radiographic utility.

More Details

Measurement and Modeling of Energetic Material Mass Transfer to Soil Pore Water - Project CP-1227 Annual Technical Report

Phelan, James M.; Phelan, James M.; Webb, Stephen W.; Romero, Joseph V.; Barnett, James B.; Bohlken, Fawn A.

Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g. weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. Experimental work to date with Composition B explosive has shown that column tests typically produce effluents near the temperature dependent solubility limits for RDX and TNT. The influence of water flow rate, temperature, porous media saturation and mass loading is documented. The mass transfer model formulation uses a mass transfer coefficient and surface area function and shows good agreement with the experimental data. Continued experimental work is necessary to evaluate solid phase particle size and 2-dimensional effects, and actual low order detonation debris. Simulation model improvements will continue leading to a capability to complete screening assessments of the impacts of military range operations on groundwater quality.

More Details
3 Results
3 Results