Publications

7 Results
Skip to search filters

Pressure-dependent competition among reaction pathways from first- and second-O2 additions in the low-temperature oxidation of tetrahydrofuran

Journal of Physical Chemistry A

Antonov, Ivan O.; Zador, Judit Z.; Rotavera, Brandon R.; Papajak, Ewa P.; Osborn, David L.; Taatjes, Craig A.; Sheps, Leonid S.

We report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10-2000 Torr and T = 400-700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.

More Details

Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH)

Science

Savee, John D.; Papajak, Ewa P.; Rotavera, Brandon R.; Huang, Haifeng; Eskola, Arkke J.; Welz, Oliver; Sheps, Leonid S.; Taatjes, Craig A.; Zador, Judit Z.; Osborn, David L.

Oxidation of organic compounds in combustion and in Earth's troposphere is mediated by reactive species formed by the addition of molecular oxygen (O2) to organic radicals. Among the most crucial and elusive of these intermediates are hydroperoxyalkyl radicals, often denoted "QOOH." These species and their reactions with O2 are responsible for the radical chain branching that sustains autoignition and are implicated in tropospheric autoxidation that can form low-volatility, highly oxygenated organic aerosol precursors. We report direct observation and kinetics measurements of a QOOH intermediate in the oxidation of 1,3-cycloheptadiene, a molecule that offers insight into both resonance-stabilized and nonstabilized radical intermediates. The results establish that resonance stabilization dramatically changes QOOH reactivity and, hence, that oxidation of unsaturated organics can produce exceptionally long-lived QOOH intermediates.

More Details
7 Results
7 Results