Publications

108 Results
Skip to search filters

Integration of the Back End of the Nuclear Fuel Cycle

Freeze, Geoffrey A.; Bonano, Evaristo J.; Swift, Peter S.; Kalinina, Elena A.; Hardin, Ernest H.; Price, Laura L.; Durbin, S.G.; Rechard, Robert P.; Gupta, Kuhika G.

Management of spent nuclear fuel and high-level radioactive waste consists of three main phases – storage, transportation, and disposal – commonly referred to as the back end of the nuclear fuel cycle. Current practice for commercial spent nuclear fuel management in the United States (US) includes temporary storage of spent fuel in both pools and dry storage systems at operating or shutdown nuclear power plants. Storage pools are filling to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler spent fuel from pools into dry storage. Unless a repository becomes available that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 136,000 metric tons of spent fuel in dry storage systems by mid-century, when the last plants in the current reactor fleet are decommissioned. Current designs for dry storage systems rely on large multi-assembly canisters, the most common of which are so-called “dual-purpose canisters” (DPCs). DPCs are certified for both storage and transportation, but are not designed or licensed for permanent disposal. The large capacity (greater number of spent fuel assemblies) of these canisters can lead to higher canister temperatures, which can delay transportation and/or complicate disposal. This current management practice, in which the utilities continue loading an ever-increasing inventory of larger DPCs, does not emphasize integration among storage, transportation, and disposal. This lack of integration does not cause safety issues, but it does lead to a suboptimal system that increases costs, complicates storage and transportation operations, and limits options for permanent disposal. This paper describes strategies for improving integration of management practices in the US across the entire back end of the nuclear fuel cycle. The complex interactions between storage, transportation, and disposal make a single optimal solution unlikely. However, efforts to integrate various phases of nuclear waste management can have the greatest impact if they begin promptly and continue to evolve throughout the remaining life of the current fuel cycle. A key factor that influences the path forward for integration of nuclear waste management practices is the identification of the timing and location for a repository. The most cost-effective path forward would be to open a repository by mid-century with the capability to directly dispose of DPCs without repackaging the spent fuel into disposalready canisters. Options that involve repackaging of spent fuel from DPCs into disposalready canisters or that delay the repository opening significantly beyond mid-century could add 10s of billions of dollars to the total system life cycle cost.

More Details

Framework for The Analysis of US Permanent Geologic Disposal Options for Radioactive Waste

Bonano, Evaristo J.

The U.S. study of permanent geologic disposal options of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) provided a technical basis for informing policy decisions regarding strategies for the management and disposal of radioactive waste requiring geologic isolation through the evaluation of potential impacts of waste forms on the feasibility and performance of representative generic concepts for geologic disposal. The goal of the study was to help inform relevant policy questions including: Is a "one-size-fits-all" repository a good strategic option for disposal? Do different waste types and forms perform differently enough in different disposal concepts that they warrant different treatment? Do some disposal concepts perform significantly better with or without specific waste types or forms?

More Details

The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

MRS Advances

Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-century when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.

More Details

Geological disposal of nuclear waste in tuff: Yucca Mountain (USA)

Elements

Swift, Peter N.; Bonano, Evaristo J.

For more than three decades, the US Department of Energy has investigated the potential for permanent disposal of high-level radioactive waste and spent nuclear fuel in a deep-mined repository at Yucca Mountain, Nevada (USA). A detailed license application submitted to the US Nuclear Regulatory Commission in 2008 provides full documentation of the case for permanent disposal of nuclear waste in tuff. The aridity of the site and great depth to the water table provide a disposal environment and a design concept unique among deep-mined repositories currently or previously proposed worldwide.

More Details

Insight from Public Surveys Related to Siting of Nuclear Waste Facilities: An Overview of Findings from a 2015 Nationwide Survey of US Residents

Rechard, Robert P.; Jenkins-Smith, Hank C.; Gupta, Kuhika G.; Silva, Carol L.; Bonano, Evaristo J.

More Details

Qualitative evaluation of options for disposal of SNF and HLW

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Price, Laura L.; Sassani, David C.; Swift, Peter N.; Bonano, Evaristo J.

Options for disposal of the spent nuclear fuel and high level radioactive waste that are projected to exist in the United States in 2048 were studied. The options included four different disposal concepts: mined repositories in salt, clay/shale rocks, and crystalline rocks; and deep boreholes in crystalline rocks. Some of the results of this study are that all waste forms, with the exception of untreated sodium-bonded spent nuclear fuel, can be disposed of in any of the mined disposal concepts, although with varying degrees of confidence; salt allows for more flexibility in managing high-heat waste in mined repositories than other media; small waste forms are potentially attractive candidates for deep borehole disposal; and disposal of commercial SNF in existing dual-purpose canisters is potentially feasible but could pose significant challenges both in repository operations and in demonstrating confidence in long-term performance. Questions addressed by this study include: is a " 'one-size-fits-all ' repository a good strategic option for disposal?" and "do some disposal concepts perform significantly better with or without specific waste types or forms? " The study provides the bases for answering these questions by evaluating potential impacts of waste forms on the feasibility and performance of representative generic concepts for geologic disposal.

More Details

Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management

Bonano, Evaristo J.

Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.

More Details

The dynamics of technical communities through the multiple phases of a Nuclear Waste Management Project

13th International High-Level Radioactive Waste Management Conference 2011, IHLRWMC 2011

Jenkins-Smith, Hank; Silva, Carol; Davidson, Tim; Bonano, Evaristo J.

The implementation of a project for the long-term disposal of nuclear waste (e.g., spent nuclear fuel, high-level radioactive waste) has proven to be one of the most challenging technical and political endeavors facing modern societies. The process of moving the project from site selection and characterization to licensing nuclear waste management facilities places shifting and, in some cases, conflicting demands on the community of technical experts engaged in providing the conceptual and quantitative bases for assessing facility safety and demonstrating regulatory compliance. At the same time, the accumulation and preservation of site-specific knowledge, data and modeling concerning the relevant components of the site is of urgent importance for the success of the overall process. To date, the evolving demands placed on these technical communities have received little systematic attention. The US efforts to site nuclear waste management facilities have faced significant challenges in developing and maintaining appropriate technical staffing, and based on recent policy shifts those challenges are likely to grow larger. This paper employs interviews with technical professionals from the US nuclear waste disposal program to analyze ways in which technical, social and political factors influence the performance of technical experts in lengthy, complex projects such as one for the long-term disposal of nuclear waste. The focus is on the interaction of the organizational and professional culture with evolving technical and professional demands. Recommendations are made for the design of sustainable technical organizations for performance of long-term risk analyses for nuclear waste management project.

More Details
108 Results
108 Results