Development of low thermal budget Si epitaxy and high-k/ metal gate stack for atomically precise electronic devices
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Micro/Nanopatterning, Materials and Metrology
The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with subnanometer precision, typically for quantum physics experiments. This process, which we call atomic precision advanced manufacturing (APAM), dopes silicon beyond the solid-solubility limit and produces electrical and optical characteristics that may also be useful for microelectronic and plasmonic applications. However, scanned probe lithography lacks the throughput required to develop more sophisticated applications. Here, we demonstrate and characterize an APAM device workflow where scanned probe lithography of the atomic layer resist has been replaced by photolithography. An ultraviolet laser is shown to locally and controllably heat silicon above the temperature required for hydrogen depassivation on a nanosecond timescale, a process resistant to under- and overexposure. STM images indicate a narrow range of energy density where the surface is both depassivated and undamaged. Modeling that accounts for photothermal heating and the subsequent hydrogen desorption kinetics suggests that the silicon surface temperatures reached in our patterning process exceed those required for hydrogen removal in temperature-programmed desorption experiments. A phosphorus-doped van der Pauw structure made by sequentially photodepassivating a predefined area and then exposing it to phosphine is found to have a similar mobility and higher carrier density compared with devices patterned by STM. Lastly, it is also demonstrated that photodepassivation and precursor exposure steps may be performed concomitantly, a potential route to enabling APAM outside of ultrahigh vacuum.
Abstract not provided.
Abstract not provided.
JPhys Materials
Atomic precision advanced manufacturing (APAM) offers creation of donor devices in an atomically thin layer doped beyond the solid solubility limit, enabling unique device physics. This presents an opportunity to use APAM as a pathfinding platform to investigate digital electronics at the atomic limit. Scaling to smaller transistors is increasingly difficult and expensive, necessitating the investigation of alternative fabrication paths that extend to the atomic scale. APAM donor devices can be created using a scanning tunneling microscope (STM). However, these devices are not currently compatible with industry standard fabrication processes. There exists a tradeoff between low thermal budget (LT) processes to limit dopant diffusion and high thermal budget (HT) processes to grow defect-free layers of epitaxial Si and gate oxide. To this end, we have developed an LT epitaxial Si cap and LT deposited Al2O3 gate oxide integrated with an atomically precise single-electron transistor (SET) that we use as an electrometer to characterize the quality of the gate stack. The surface-gated SET exhibits the expected Coulomb blockade behavior. However, the gate’s leverage over the SET is limited by defects in the layers above the SET, including interfaces between the Si and oxide, and structural and chemical defects in the Si cap. We propose a more sophisticated gate stack and process flow that is predicted to improve performance in future atomic precision devices.
Applied Physics Letters
Here, the design, fabrication, and characterization of an actively tunable long-wave infrared detector, made possible through direct integration of a graphene-enabled metasurface with a conventional type-II superlattice infrared detector, are reported. This structure allows for post-fabrication tuning of the detector spectral response through voltage-induced modification of the carrier density within graphene and, therefore, its plasmonic response. These changes modify the transmittance through the metasurface, which is fabricated monolithically atop the detector, allowing for spectral control of light reaching the detector. Importantly, this structure provides a fabrication-controlled alignment of the metasurface filter to the detector pixel and is entirely solid-state. Using single pixel devices, relative changes in the spectral response exceeding 8% have been realized. These proof-of-concept devices present a path toward solid-state hyperspectral imaging with independent pixel-to-pixel spectral control through a voltage-actuated dynamic response.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.