Publications

12 Results
Skip to search filters

Molecular dynamics simulation of zirconium tungstate amorphization and the amorphous-crystalline interface

Journal of Physics Condensed Matter

Greathouse, Jeffery A.; Weck, Philippe F.; Gordon, Margaret E.; Kim, Eunja; Bryan, Charles R.

Classical molecular dynamics (MD) simulations were performed to provide a conceptual understanding of the amorphous-crystalline interface for a candidate negative thermal expansion (NTE) material, ZrW2O8. Simulations of pressure-induced amorphization at 300 K indicate that an amorphous phase forms at pressures of 10 GPa and greater, and this phase persists when the pressure is subsequently decreased to 1 bar. However, the crystalline phase is recovered when the slightly distorted 5 GPa phase is relaxed to 1 bar. Simulations were also performed on a two-phase model consisting of the high-pressure amorphous phase in direct contact with the crystalline phase. Upon equilibration at 300 K and 1 bar, the crystalline phase remains unchanged beyond a thin layer of disrupted structure at the crystalline-amorphous interface. Differences in local atomic structure at the interface are quantified from the simulation trajectories.

More Details

Novel Zoned Waste-forms for High-Priority Radionuclide Waste Streams

Bryan, Charles R.; Gordon, Margaret E.; Greathouse, Jeffery A.; Weck, Philippe F.; Kim, Eunja

This report describes the potential of a novel class of materials--a-ZrW 2 0 8 , Zr 2 WP 2 0 12 , and related compounds that contract upon amorphization as possible radionuclide waste-forms. The proposed ceramic waste-forms would consist of zoned grains, or sintered ceramics with center- loaded radionuclides and barren shells. Radiation-induced amorphization would result in core shrinkage but would not fracture the shells or overgrowths, maintaining isolation of the radionuclide. In this report, we have described synthesis techniques to produce phase-pure forms of the materials, and how to fully densify those materials. Structural models for the materials were developed and validated using DFPT approaches, and radionuclide substitution was evaluated; U(IV), Pu(IV), Tc(IV) and Tc(VII) all readily substitute into the material structures. MD modeling indicated that strain associated with radiation-induced amorphization would not affect the integrity of surrounding crystalline materials, and these results were validated via ion beam experimental studies. Finally, we have evaluated the leach rates of the barren materials, as determined by batch and flow-through reactor experiments. ZrW 2 0 8 leaches rapidly, releasing tungstate while Zr is retained as a solid oxide or hydroxide. Tungsten release rates remain elevated over time and are highly sensitive to contact times, suggesting that this material will not be an effective waste-form. Conversely, tungsten releases rates from Zr2WP2012 rapidly drop, show little dependence on short-term changes in fluid contact time, and in over time, become tied to P release rates. The results presented here suggest that this material may be a viable waste-form for some hard-to-handle radionuclides such as Pu and Tc. ACKNOWLEDGEMENTS The authors acknowledge the contributions to this report from Sandia National Laboratories researchers Steven Meserole, Mark Rodriguez, Clay Payne, Tim Boyle, Nate Padilla, Khalid Hattar, Anthony Monterrosa, Trevor Clark, and Daniel Perry.

More Details

Elucidating Structure-Spectral Property Relationships of Negative Thermal Expansion Zr2(WO4)(PO4)2: A First-Principles Study with Experimental Validation

Journal of Physical Chemistry C

Weck, Philippe F.; Kim, Eunja; Gordon, Margaret E.; Greathouse, Jeffery A.; Meserole, Stephen M.; Bryan, Charles R.

The phonon, infrared, and Raman spectroscopic properties of zirconium tungsten phosphate, Zr2(WO4)(PO4)2 (space group Pbcn, IT No. 60; Z = 4), have been extensively investigated using density functional perturbation theory (DFPT) calculations with the Perdew, Burke, and Ernzerhof exchange-correlation functional revised for solids (PBEsol) and validated by experimental characterization of Zr2(WO4)(PO4)2 prepared by hydrothermal synthesis. Using DFPT-simulated infrared, Raman, and phonon density-of-state spectra combined with Fourier transform infrared and Raman measurements, new comprehensive and extensive assignments have been made for the spectra of Zr2(WO4)(PO4)2, resulting in the characterization of its 29 and 34 most intense IR- and Raman-active modes, respectively. DFPT results also reveal that ν1(PO4) symmetric stretching and ν3(PO4) antisymmetric stretching bands have been interchanged in previous Raman experimental assignments. Negative thermal expansion in Zr2(WO4)(PO4)2 appears to have very limited impact on the spectral properties of this compound. This work shows the high accuracy of the PBEsol exchange-correlation functional for studying the spectroscopic properties of crystalline materials using first-principles methods.

More Details

Zirconium chloride molecular species: combining electron impact mass spectrometry and first principles calculations

SN Applied Sciences

Borjas Nevarez, Rosendo; Kim, Eunja; Childs, Bradley C.; Braband, Henrik; Bigler, Laurent; Stalder, Urs; Alberto, Roger; Weck, Philippe F.; Poineau, Frederic

Zirconium tetrachloride was synthesized from the reaction between zirconium metal and chlorine gas at 300 °C and was analyzed by electron impact mass spectrometry (EI-MS). Substantial fragmentation products of ZrCl4 were observed in the mass spectra, with ZrCl3 being the most abundant species, followed by ZrCl2, ZrCl, and Zr. The predicted geometry and kinetic stability of the fragments previously mentioned were investigated by density functional theory (DFT) calculations. Energetics of the dissociation processes support the most stable fragment to be ZrCl3 while the least abundant are ZrCl and ZrCl2.

More Details

Structure-thermodynamics relationship of schoepite from first-principles

Physical Chemistry Chemical Physics

Weck, Philippe F.; Jove Colon, Carlos F.; Kim, Eunja

The relationship between the structure and thermodynamic properties of schoepite, an important uranyl phase with formula [(UO2)8O2(OH)12]·12H2O formed upon corrosion of UO2, has been investigated within the framework of density functional perturbation theory (DFPT). Experimental crystallographic lattice parameters are well reproduced in this study using standard DFT. Phonon calculations within the quasi-harmonic approximation predict standard molar entropy and isobaric heat capacity of S0 = 179.60 J mol-1 K-1 and C0P = 157.4 J mol-1 K-1 at 298.15 K, i.e., ∼6% and ∼4% larger than existing DFPT-D2 calculations. The computed variation of the standard molar isobaric heat capacity with water content from schoepite (UO3·xH2O, x = 2.25) to dehydrated schoepite (x = 1) is predicted to be essentially linear along isotherms ranging from 100 to 500 K. These findings have important implications for the dehydration of layered uranyl corrosion phases and hygroscopic materials.

More Details

Structural properties of crystalline and amorphous zirconium tungstate from classical molecular dynamics simulations

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Greathouse, Jeffery A.; Weck, Philippe F.; Gordon, Margaret E.; Kim, Eunja; Bryan, Charles R.

We use molecular simulations to provide a conceptual understanding of a crystalline-amorphous interface for a candidate negative thermal expansion (NTE) material. Specifically, classical molecular dynamics (MD) simulations were used to investigate the temperature and pressure dependence on structural properties of ZrW2O8. Polarizability of oxygen atoms was included to better account for the electronic charge distribution within the lattice. Constant-pressure simulations of cubic crystalline ZrW2O8 at ambient pressure reveal a slight NTE behavior, characterized by a small structural rearrangement resulting in oxygen sharing between adjacent WO4 tetrahedra. Periodic quantum calculations confirm that the MD-optimized structure is lower in energy than the idealized structure obtained from neutron diffraction experiments. Additionally, simulations of pressure-induced amorphization of ZrW2O8 at 300 K indicate that an amorphous phase forms at pressures greater than 10 GPa, and this phase persists when the pressure is decreased to 1 bar. Simulations were performed on a hybrid model consisting of amorphous ZrW2O8 in direct contact with the cubic crystalline phase. Upon equilibration at 300 K and 1 bar, the crystalline phase remains unchanged beyond a thin layer of disrupted structure at the amorphous interface. Detailed analysis reveals the transition in metal coordination at the interface.

More Details

Potential use of novel Zr-P-W wasteforms for radionuclide waste streams

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Bryan, Charles R.; Gordon, Margaret E.; Weck, Philippe F.; Greathouse, Jeffery A.; Kim, Eunja; Payne, Clay P.

Appropriate waste-forms for radioactive materials must isolate the radionuclides from the environment for long time periods. To accomplish this typically requires low waste-form solubility, to minimize radionuclide release to the environment. However, radiation eventually damages most waste-forms, leading to expansion, crumbling, increased exposed surface area, and faster dissolution. We have evaluated the use of a novel class of materials-ZrW2O8, Zr2P2WO12 and related compounds-that contract upon amorphization. The proposed ceramic waste-forms would consist of zoned grains, or sintered ceramics with center-loaded radionuclides and barren shells. Radiation-induced amorphization would result in core shrinkage but would not fracture the shells or overgrowths, maintaining isolation of the radionuclide. We have synthesized these phases and have evaluated their leach rates. Tungsten forms stable aqueous species at neutral to basic conditions, making it a reliable indicator of phase dissolution. ZrW2O8 leaches rapidly, releasing tungstate while Zr is retained as a solid oxide or hydroxide. Tungsten release rates remain elevated over time and are highly sensitive to contact times, suggesting that this material will not be an effective waste-form. Conversely, tungsten release rates from Zr2P2WO12 rapidly drop and are tied to P release rates; we speculate that a low-solubility protective Zr-phosphate leach layer forms, slowing further dissolution.

More Details

Combined computational and experimental study of zirconium tungstate

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Kim, Eunja; Gordon, M.E.; Weck, Philippe F.; Greathouse, Jeffery A.; Meserole, S.P.; Rodriguez, Mark A.; Payne, Clay P.; Bryan, Charles R.

We have investigated cubic zirconium tungstate (ZrW2O8) using density functional perturbation theory (DFPT), along with experimental characterization to assess and validate computational results. Cubic zirconium tungstate is among the few known materials exhibiting isotropic negative thermal expansion (NTE) over a broad temperature range, including room temperature where it occurs metastably. Isotropic NTE materials are important for technological applications requiring thermal-expansion compensators in composites designed to have overall zero or adjustable thermal expansion. While cubic zirconium tungstate has attracted considerable attention experimentally, a very few computational studies have been dedicated to this well-known NTE material. Therefore, spectroscopic, mechanical and thermodynamic properties have been derived from DFPT calculations. A systematic comparison of the calculated infrared, Raman, and phonon density-of-state spectra has been made with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements. The thermal evolution of the lattice parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with the observed negative thermal expansion characteristics of cubic zirconium tungstate, α-ZrW2O8. These results show that this DFPT approach can be used for studying the spectroscopic, mechanical and thermodynamic properties of prospective NTE ceramic waste forms for encapsulation of radionuclides produced during the nuclear fuel cycle.

More Details
12 Results
12 Results