Yao, Chenyi; Ba, Qingxin; Hecht, Ethan S.; Christopher, David M.; Li, Xuefang
Compressed hydrogen stored at cryogenic temperatures has a much higher density than room-temperature storage, which enables large-scale hydrogen storage and transport. An understanding of the release of cryogenic hydrogen from pressurized vessels is needed to evaluate the risk and safety concerns with the use of this fuel. The present work extends the analysis of previous experimental studies that measured the gas concentrations of cryo-compressed hydrogen jets and methane jets using a laser Raman scattering diagnostic system. Since the Raman signals are very small, a denoising algorithm was applied to significantly reduce the noise to enable statistical analysis of the data. The transient features of the turbulent jets were characterized by their concentration intermittencies and probability density functions (PDFs). A two-part PDF was developed to predict the bimodal features of the jet concentration distributions. Then, the flammability factors of the cryogenic jets were calculated based on the intermittency and the PDF.
Five alternative design configurations for a heavy-duty hydrogen refueling truck stop are detailed in this work. Each of the station concepts provides fast, 5-minute, 50 kg fills of up to 4 vehicles simultaneously, with a station capacity of 4200 kg/day. Two on-site production stations using PEM electrolysis are considered: one with off-peak production of the daily capacity; and one with on-demand production of hydrogen during vehicle refueling. Three delivered liquid hydrogen station concepts are considered: one with the same, high-pressure cascade storage system for dispensing as the electrolysis supplied stations, with low-pressure vaporization of the liquid hydrogen and pressurization via a compressor; and two with on-demand pressurization: one by low-pressure vaporization and compressors; and one with a cryogenic pump and high-pressure vaporization. Design, economic, and operational considerations for each of the components needed in these station concepts is provided. Of all the station concepts, the delivered liquid station with a low-pressure vaporizer and a cascade dispensing system has the lowest capital costs and equipment footprint, but the second highest operating costs primarily due to high costs for liquid hydrogen delivery. The lowest operating cost station is that with on-site production via PEM electrolysis at off-peak hours with a cascade delivery system. The low-pressure buffer storage system and electrolyzers have a large footprint and considerable capital costs, but could result in a low total cost of ownership, depending on the design timeline. The liquid hydrogen station with a cryo-pump has moderate capital costs, the lowest operating costs of the three delivered hydrogen stations, and the same small equipment footprint as the delivered liquid, cascade dispensing system. As cryogenic pumping technology improves and the capital costs for these pumps decreases, this station concept will become even more favorable. Three-dimensional renderings of the five station concepts provide station designers with a starting point for the development of heavy-duty refueling stations.
HyRAM+ is a toolkit that includes fast-running models for the unconstrained (i.e., no wall interactions) dispersion and flames for non-premixed fuels. The models were developed for use with hydrogen, but the toolkit was expanded to include propane and methane in a recent release. In this work we validate the dispersion and flame models for these additional fuels, based on reported literature data. The validation efforts spanned a range of release conditions, from subsonic to underexpanded jets and flames for a range of mass flow rates. In general, the dispersion model works well for both propane and methane although the width of the jet/plume is predicted to be wider than observed in some cases. The flame model tends to over-predict the induced buoyancy for low-momentum flames, while the radiative heat flux agrees with the experimental data reasonably well, for both fuels. The models could be improved but give acceptable predictions for propane and methane behavior for the purposes of risk assessment.
In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment.
The previous separation distances in the National Fire Protection Association (NFPA) Hydrogen Technologies Code (NFPA 2, 2020 Edition) for bulk liquid hydrogen systems lack a well-documented basis and can be onerous. This report describes the technical justifications for revisions of the bulk liquid hydrogen storage setback distances in NFPA 2, 2023 Edition. Distances are calculated based on a leak area that is 5% of the nominal pipe flow area. Models from the open source HyRAM+ toolkit are used to justify the leak size as well as calculate consequence-based separation distances from that leak size. Validation and verification of the numerical models is provided, as well as justification for the harm criteria used for the determination of the setback distances for each exposure type. This report also reviews mitigations that could result in setback distance reduction. The resulting updates to the liquid hydrogen separation distances are well-documented, retrievable, repeatable, revisable, independently verified, and use experimental results to verify the models.
In this work, we investigate the potential of liquid hydrogen storage (LH2) on-board Class-8 heavy duty trucks to resolve many of the range, weight, volume, refueling time and cost issues associated with 350 or 700-bar compressed H2 storage in Type-3 or Type-4 composite tanks. We present and discuss conceptual storage system configurations capable of supplying H2 to fuel cells at 5-bar with or without on-board LH2 pumps. Structural aspects of storing LH2 in double walled, vacuum insulated, and low-pressure Type-1 tanks are investigated. Structural materials and insulation methods are discussed for service at cryogenic temperatures and mitigation of heat leak to prevent LH2 boiloff. Failure modes of the liner and shell are identified and analyzed using the regulatory codes and detailed finite element (FE) methods. The conceptual systems are subjected to a Failure modes and effects analysis (FMEA) and a safety, codes, and standards (SCS) review to rank failures and identify safety gaps. The results indicate that the conceptual systems can reach 19.6% usable gravimetric capacity, 40.9 g-H2/L usable volumetric capacity and $174-183/kg-H2 cost (2016 USD) when manufactured 100,000 systems annually.
Previous research has provided strong evidence that CO2 and H2O gasification reactions can provide non-negligible contributions to the consumption rates of pulverized coal (pc) char during combustion, particularly in oxy-fuel environments. Fully quantifying the contribution of these gasification reactions has proven to be difficult, due to the dearth of knowledge of gasification rates at the elevated particle temperatures associated with typical pc char combustion processes, as well as the complex interaction of oxidation and gasification reactions. Gasification reactions tend to become more important at higher char particle temperatures (because of their high activation energy) and they tend to reduce pc oxidation due to their endothermicity (i.e. cooling effect). The work reported here attempts to quantify the influence of the gasification reaction of CO2 in a rigorous manner by combining experimental measurements of the particle temperatures and consumption rates of size-classified pc char particles in tailored oxy-fuel environments with simulations from a detailed reacting porous particle model. The results demonstrate that a specific gasification reaction rate relative to the oxidation rate (within an accuracy of approximately +/- 20% of the pre-exponential value), is consistent with the experimentally measured char particle temperatures and burnout rates in oxy-fuel combustion environments. Conversely, the results also show, in agreement with past calculations, that it is extremely difficult to construct a set of kinetics that does not substantially overpredict particle temperature increase in strongly oxygen-enriched N2 environments. This latter result is believed to result from deficiencies in standard oxidation mechanisms that fail to account for falloff in char oxidation rates at high temperatures.
The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, natural gas, and autogas systems. HyRAM+ is designed to facilitate the use of state-of-the-art models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ integrates deterministic and probabilistic models for quantifying leak sizes and rates, predicting physical effects, characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impacts on people. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards, and to provide developed models in a publicly-accessible toolkit usable by all stakeholders. This document provides a description of the methodology and models contained in HyRAM+ version 5.0. The most significant change for HyRAM+ version 5.0 from HyRAM+ version 4.1 is the ability to model blends of different fuels. HyRAM+ was previously only suitable for use with hydrogen, methane, or propane, with users having the ability to use methane as a proxy for natural gas and propane as a proxy for autogas/liquefied petroleum gas. In version 5.0, real natural gas or autogas compositions can be modeled as the fuel, or even blends of natural gas with hydrogen. These blends can be used in the standalone physics models, but not yet in the quantitative risk assessment mode of HyRAM+.
Previous research has provided strong evidence that CO2 and H2O gasification reactions can provide non-negligible contributions to the consumption rates of pulverized coal (pc) char during combustion, particularly in oxy-fuel environments. Fully quantifying the contribution of these gasification reactions has proven to be difficult, due to the dearth of knowledge of gasification rates at the elevated particle temperatures associated with typical pc char combustion processes, as well as the complex interaction of oxidation and gasification reactions. Gasification reactions tend to become more important at higher char particle temperatures (because of their high activation energy) and they tend to reduce pc oxidation due to their endothermicity (i.e. cooling effect). The work reported here attempts to quantify the influence of the gasification reaction of CO2 in a rigorous manner by combining experimental measurements of the particle temperatures and consumption rates of size-classified pc char particles in tailored oxy-fuel environments with simulations from a detailed reacting porous particle model. The results demonstrate that a specific gasification reaction rate relative to the oxidation rate (within an accuracy of approximately +/- 20% of the pre-exponential value), is consistent with the experimentally measured char particle temperatures and burnout rates in oxy-fuel combustion environments. Conversely, the results also show, in agreement with past calculations, that it is extremely difficult to construct a set of kinetics that does not substantially overpredict particle temperature increase in strongly oxygen-enriched N2 environments. This latter result is believed to result from deficiencies in standard oxidation mechanisms that fail to account for falloff in char oxidation rates at high temperatures.
Liquid hydrogen (LH2) used as a fuel onboard a heavy-duty vehicle can result in increased storage capacity and faster refueling relative to compressed gas. However, there are concerns about hydrogen losses from boil-off, potential safety issues, gaps in codes and standards for cryogenic hydrogen fuel, and technical challenges with LH2 systems for widespread transportation applications. A failure modes and effects analysis (FMEA), a safety codes and standards review, and a design review of the onboard liquid hydrogen system for a heavy-duty vehicle identified some of these potential safety issues and gaps in the codes and standards. The FMEA identified some medium and low risk failure points of the conceptual design, and the design review identified how carefully pressure relief needs to be considered for LH2 systems. In addition, a conceptual design for a LH2 refueling station was developed. Rough capital costs for the refueling station design were $\$1 million$ and the layout occupied approximately 13,000 ft2. These results can be used to inform future designs and analyses for LH2 heavy-duty vehicles.
The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, methane, and propane systems. HyRAM+ is designed to facilitate the use of state-of-the-art models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impacts on people. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards, and to provide developed models in a publicly-accessible toolkit usable by all stakeholders. This document provides a description of the methodology and models contained in HyRAM+ version 4.1. The two most significant changes for HyRAM+ version 4.1 from HyRAM+ version 4.0 are direct incorporation of unconfined overpressure into the QRA calculations and modification of the models for cryogenic liquid flow through an orifice. In QRA mode, the user no longer needs to input peak overpressure and impulse values that were calculated separately; rather, the unconfined overpressure is estimated for the given system inputs, leak size, and occupant location. The orifice flow model now solves for the maximum mass flux through the orifice at constant entropy while conserving energy, which does not require a direct speed of sound calculation. This does not affect the mass flow for all-gaseous releases; the method results in the same speed of sound for choked flow. However, this method does result in a higher (and more realistic) mass flow rate for a given leak size for liquid releases than was previously calculated.
There are several different calculation approaches and tools that can be used to evaluate the risk of hydrogen energy applications. A comparative study of Air Liquide’s ALDEA (Air Liquide Dispersion and Explosion Assessment) tools suite and Sandia’s HyRAM (Hydrogen Risk Assessment Models) toolkit has been conducted. The purpose of this study was to understand and evaluate the differences between the two calculation approaches, and identify areas for model improvements. There were several scenarios examined in this effort regarding hydrogen release dynamics. These scenarios include free jet release cases at varying pressures, vessel blowdown, and hydrogen build-up scenarios with and without ventilation. For each scenario, the input and output of the HyRAM calculations are documented, along with a comparison to the ALDEA results. Generally, the results from the two different tools were reasonably aligned. However, there were fundamental differences in evaluation methodology and functional limitations in HyRAM that caused discrepancies in some calculations.
The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, methane, and propane infrastructure and transportation systems. HyRAM+ is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ includes generic probabilities for equipment failures, probabilistic models for the impact of heat flux on humans and structures, and experimentally validated first-order models of release and flame physics. HyRAM+ integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impact on people and structures. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards. HyRAM+ is a research software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals. This document provides a description of the methodology and models contained in HyRAM+ version 4.0. The most significant change for HyRAM+ version 4.0 from HyRAM version 3.1 is the incorporation of other alternative fuels, namely methane (as a proxy for natural gas) and propane into the toolkit. This change necessitated significant changes to the installable graphical user interface as well as changes to the back-end Python models. A second major change is the inclusion of physics models for the overpressure associated with the delayed ignition of an unconfined jet/plume of flammable gas.
Liquefied petroleum gas (LPG) is a viable, cleaner alternative to traditional diesel fuel used in busses and other heavy-duty vehicles and could play a role in helping the US meet its lower emission goals. While the LPG industry has focused efforts on developing vehicles and fueling infrastructure, we must also establish safe parameters for maintenance facilities which are servicing LPG fueled vehicles. Current safety standards aid in the design of maintenance facilities, but additional quantitative analysis is needed to prove safeguards are adequate and suggest improvements where needed. In this report we aim to quantify the amount of flammable mass associated with propane releases from vehicle mounted fuel vessels within enclosed garages. Furthermore, we seek to qualify harm mitigation with variable ventilations and facility layout. To accomplish this we leverage validated computational resources at Sandia National Laboratories to simulate various release scenarios representative of real world vehicles and maintenance facilities. Flow solvers are used to predict the dynamics of fuel systems as well as the evolution of propane during release events. From our simulated results we observe that both inflow and outflow ventilation locations play a critical role in reducing flammable cloud size and potential overpressure values during a possible combustion event.
Understanding liquid hydrogen tank fluid dynamics is key for modeling liquid hydrogen systems. The tank is the source for nearly all liquid hydrogen systems. Accurate flow modeling out of the tank is needed to predict flows through downstream components. Tank contains liquid and gas that may not be at equilibrium. Questions to be addressed are: Does heat and mass transfer between liquid and vapor affect the flow rate? Is boiling an important consideration? For what conditions is a pressure relief valve (PRV) sufficient to relieve pressure and when is the burst disc needed?
The Hydrogen Risk Assessment Models (HyRAM) software version 3 uses a real gas equation of state rather than the Abel-Noble equation of state that is used in 2.0 and previous versions. This change enables the use of HyRAM 3 for cryogenic hydrogen flows, whereas the Abel-Noble equation of state is not accurate at low temperatures. HyRAM 3.1 results were compared to experimental data from the literature in order to demonstrate the accuracy of the physics models. HyRAM 3.1 results were also compared to HyRAM 2.0 for high-pressure, non-cryogenic flows to highlight the differences in predictions between the two major versions of HyRAM. Validation data sets are from multiple groups and span the range of HyRAM physics models, including tank blowdown, unignited dispersion jet plume, ignited jet flame, and accumulation and overpressure inside an enclosure. Both versions 2.0 and 3.1 of HyRAM are accurate for predictions of blowdowns, diffusion jets, and diffusion flames of hydrogen at pressures up to 900 bar, and HyRAM 3.1 also shows good agreement with cryogenic hydrogen data. Overall, HyRAM 3.1 improves on the accuracy of the physical models relative to HyRAM 2.0. In most cases, this reduces the conservatism in risk calculations using HyRAM.
The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM includes generic probabilities for hydrogen equipment failures, probabilistic models for the impact of heat flux on humans and structures, and experimentally validated first-order models of hydrogen release and flame physics. HyRAM integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet res, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is developed at Sandia National Laboratories for the U.S. Department of Energy to increase access to technical data about hydrogen safety and to enable the use of that data to support development and revision of national and international codes and standards. HyRAM is a research software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals. This document provides a description of the methodology and models contained in HyRAM version 3.1. There have been several impactful updates since version 3.0. HyRAM 3.1 contains a correction to use the volume fraction for two-phase speed of sound calculations; this only affects cryogenic releases in which two-phase ow (vapor and liquid) is predicted in the orifice. Other changes include clarifications that inputs for tank pressure should be given in absolute pressure, not gauge pressure. Additionally, the interface now rejects invalid inputs to probability distributions, and the less accurate single-point radiative source model selection was removed from the interface.
Comparison of Computational Fluid Dynamics (CFD) predictions with measurements is presented for cryo-compressed hydrogen vertical jets. The stagnation conditions of the experiments are characteristic of unintended leaks from pipe systems that connect cryogenic hydrogen storage tanks and could be encountered at a fuel cell refueling station. Jets with pressure up to 5 bar and temperatures just above the saturation liquid temperature were examined. Comparisons are made to the centerline mass fraction and temperature decay rates, the radial profiles of mass fraction and the contours of volume fraction. Two notional nozzle approaches are tested to model the under-expanded jet that was formed in the tests with pressures above 2 bar. In both approaches the mass and momentum balance from the throat to the notional nozzle are solved, while the temperature at the notional nozzle was assumed equal to the nozzle temperature in the first approach and was calculated by an energy balance in the second approach. The two approaches gave identical results. Satisfactory agreement with the measurements was found in terms of centerline mass fraction and temperature. However, for test with 3 and 4 bar release the concentration was overpredicted. Furthermore, a wider radial spread was observed in the predictions possibly revealing higher degree of diffusion using the k-ε turbulence model. An integral model for cryogenic jets was also developed and provided good results. Finally, a test simulation was performed with an ambient temperature jet and compared to the cold jet showing that warm jets decay faster than cold jets.
Liquid hydrogen is increasingly being used as a delivery and storage medium for stations that provide compressed gaseous hydrogen for fuel cell electric vehicles. In efforts to provide scientific justification for separation distances for liquid hydrogen infrastructure in fire codes, the dispersion characteristics of cryogenic hydrogen jets (50–64 K) from high aspect ratio nozzles have been measured at 3 and 5 barabs stagnation pressures. These nozzles are more characteristic of unintended leaks, which would be expected to be cracks, rather than conventional round nozzles. Spontaneous Raman scattering was used to measure the concentration and temperature field along the major and minor axes. Within the field of interrogation, the axis-switching phenomena was not observed, but rather a self-similar Gaussian-profile flow regime similar to room temperature or cryogenic hydrogen releases through round nozzles. The concentration decay rate and half-widths for the planar cryogenic jets were found to be nominally equivalent to that of round nozzle cryogenic hydrogen jets indicating a similar flammable envelope. The results from these experiments will be used to validate models for cryogenic hydrogen dispersion that will be used for simulations of alternative scenarios and quantitative risk assessment.
Unintentional leaks at hydrogen fueling stations have the potential to form hydrogen jet flames, which pose a risk to people and infrastructure. The heat flux from these jet flames are often used to develop separation distances between hydrogen components and buildings, lot-lines, etc. The heat flux and visible flame length is well understood for releases from round nozzles, but real unintended leaks would be expected to be from higher aspect-ratio cracks. In this work, we measured the visible flame length and heat-flux characteristics of cryogenic hydrogen flames from high-aspect ratio nozzles. Heat flux measurements from 5 radiometers were used to assess the single-point vs the multi-point methods for interpretation of heat flux sensor data, finding the axial distance of the sensor for a single-point heat flux measurement to be important. We compare the flame length and heat flux data to flames of both cryogenic and compressed hydrogen from round nozzles. The aspect ratio of the release does not affect the flame length or heat flux significantly, for a given mass flow under the range of conditions studied. The engineering correlations presented in this work enable the prediction of flame length and heat flux which can be used to assess risk at hydrogen fueling stations with liquid hydrogen and develop science-based separation distances for these stations.
Li, Xuefang; Chowdhury, Bikram R.; He, Qian; Christopher, David M.; Hecht, Ethan S.
Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study, particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus, this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity, the present work indicates that the two-layer model is a promising tool for fast, accurate predictions of the flow fields of underexpanded hydrogen jets.
The Hydrogen Risk Assessment Model Plus (HyRAM+) toolkit combines quantitative risk assessment with simulations of unignited dispersion, ignited turbulent diffusion flames, and indoor accumulation with delayed ignition of fuels. HyRAM+ is differentiated from HyRAM in that it includes models and leak data for other alternate fuels. The models of the physical phenomena need to be validated for each of the fuels in the toolkit. This report shows the validation for propane which is being used as a surrogate for autogas, which is a mixture of propane and butane and used in internal combustion engines in vehicles. For flame length comparisons, five previously published experiments from peer reviewed journals were used to validate our models. The validation looked at flame lengths and flame widths with respect to different leak diameters, mass flow rates, and source pressures. Most of the sources included more than one set of experimental data, which were collected using different methods (CCD cameras, IR visualization etc.). In general, HyRAM+ overpredicts the flame lengths by around 65%. For heat and radiation models, we compared the heat flux and radiation data reported from two different sources to the values calculated by HyRAM+. For higher mass flow rates, the HyRAM+ calculated flame length results gave a better estimate of what is found in the experiments (65% error), but a higher error (85%) is observed between the HyRAM+ calculated lengths and the experimental flame lengthsfor lower mass flows. Some differences can be attributed to outdoor environmental effects (i.e. wind speed) and uncertainties in jet flame shapes. The propane flame trajectory is predicted for a high Reynolds number case with Re = 12,500 and a low Reynolds number case where Re = 2,000. The Re=12,500 case which is momentum dominated matches well with the experimental flame trajectory, but the agreement for the bouancy driven low Reynolds number case is not as good. Dispersion modeling for unignited propane was also analyzed. We compared the mole fraction, mixture fraction, mean velocity, concentration half width, and inverse mass concentration over an axial distance from different credible journals to the values calculated by HyRAM+. The results display good agreement but generally, HyRAM+ predicts a wider profile for mole fraction and mixture fraction experiments. Overall, HyRAM+’s results are reasonable for predicting the flame length, heat flux, flame trajectory, and dispersion for propane and can be used in risk analyses
Dispensers are the top cause of maintenance events and down-time at hydrogen fueling stations. In an effort to help characterize and enable improvements in dispenser reliability, an extensive accelerated lifetime testing set-up was designed and built at NREL involving components typically part of dispensing operations at fueling stations. Device Under Test (DUTs) included different components such as normally open valves, normally closed valves, fueling nozzles, breakaways devices and filters. Conditions of testing included pressures, and flow rates similar to light duty fuel cell electric vehicles fueling at -40°C, and -20°C for thousands of cycles in hydrogen. Tested components (failed and non-failed) were disassembled at SNL and polymeric O-rings were carefully retrieved and cataloged for chemical and physical characterization. Data collected was compared to similar O-rings from unexposed or non-tested components for hydrogen effects, and failure modes. Degradation analyses, based on select polymer chemistries common across all component types, their location within components, visual assessment of damage coupled with strong hydrogen effects from chemical characterization, was completed and presented to NREL and DOE. Overall, the failure rate amongst the components was not as high as expected for the test conditions. Among the component types tested, breakaways were the most susceptible to damage under these test conditions, with fueling nozzles a close second. The proper combination of selection of the right polymer and optimum component design was found to make a strong difference in component reliability under severe dispenser operating conditions. Physical degradation of polymers, rather than chemical changes due to low temperature hydrogen exposure, is more prevalent as failure mode for these test conditions. The nature and the extent of the degradation was much less at -20°C as compared to -40°C. The damage and failure rates were higher at lower temperatures than at higher test temperatures. As expected, increasing the number of cycles at the lowest test temperature (-40°C) increased damage. This indicates that cycling at the low temperature of -40°C required by SAE J2601 can reduce component life in fuel dispensing operations