Publications

14 Results
Skip to search filters

Depolymerization of lignin for biological conversion through sulfonation and a chelator-mediated Fenton reaction

Green Chemistry

Martinez, Daniella V.; Sale, Kenneth L.; Simmons, Blake A.; Sale, Kenneth L.; Simmons, Blake A.; Singer, Steven W.; Martinez, Daniella V.; Rodriguez Ruiz, Jose A.; Juarros, Miranda A.; Martinez, Estevan J.; Alam, Todd M.; Sale, Kenneth L.; Kent, Michael S.

Generating value from lignin through depolymerization and biological conversion to valuable fuels, chemicals, or intermediates has great promise but is limited by several factors including lack of cost-effective depolymerization methods, toxicity within the breakdown products, and low bioconversion of the breakdown products. High yield depolymerization of natural lignins requires cleaving carbon-carbon bonds in addition to ether bonds. To address that need, we report that a chelator-mediated Fenton reaction can efficiently cleave C-C bonds in sulfonated polymers at or near room temperature, and that unwanted repolymerization can be minimized through optimizing reaction conditions. This method was used to depolymerize lignosulfonate from Mw = 28 000 g mol−1 to Mw = 800 g mol−1. The breakdown products were characterized by SEC, FTIR and NMR and evaluated for bioavailability. The breakdown products are rich in acid, aldehyde, and alcohol functionalities but are largely devoid of aromatics and aliphatic dienes. A panel of nine organisms were tested for the ability to grow on the breakdown products. Growth at a low level was observed for several monocultures on the depolymerized lignosulfonate in the absence of glucose. Much stronger growth was observed in the presence of 0.2% glucose and for one organism we demonstrate doubling of melanin production in the presence of depolymerized lignosulfonate. The results suggest that this chelator-mediated Fenton method is a promising new approach for biological conversion of lignin into higher value chemicals or intermediates.

More Details

Carbonyl Identification and Quantification Uncertainties for Oxidative Polymer Degradation

Polymer Degradation and Stability

Celina, Mathias C.; Linde, Carl E.; Martinez, Estevan J.

The most revealing indicator for oxidative processes or state of degraded plastics is usually carbonyl formation, a key step in materials degradation as part of the carbon cycle for man-made materials. Hence, the identification and quantification of carbonyl species with infrared spectroscopy have been the method of choice for generations, thanks to their strong absorbance and being an essential intermediate in carbon oxidation pathways. Despite their importance, precise identification and quantification can be challenging and rigorous fully traceable data are surprisingly rare in the existing literature. An overview of the complexity of carbonyl quantification is presented by the screening of reference compounds in solution with transmission and polymer films with ATR IR spectroscopy, and systematic data analyses. Significant variances in existing data and their past use have been recognized. Guidance is offered how better measurements and data reporting could be accomplished. Experimental variances depend on the combination of uncertainty in exact carbonyl species, extinction coefficient, contributions from neighboring convoluting peaks, matrix interaction phenomena and instrumental variations in primary IR spectral acquisition (refractive index and penetration depth for ATR measurements). In addition, diverging sources for relevant extinction coefficients may exist, based on original spectral acquisition. For common polymer degradation challenges, a relative comparison of carbonyl yields for a material is easily accessible, but quantification for other purposes, such as degradation rates and spatially dependent interpretation, requires thorough experimental validation. All variables highlighted in this overview demonstrate the significant error margins in carbonyl quantification, with exact carbonyl species and extinction coefficients already being major contributors on their own.

More Details

Curing behavior, chain dynamics, and microstructure of high Tg thiol-acrylate networks with systematically varied network heterogeneity

Polymer

Jones, Brad H.; Alam, Todd M.; Lee, Sangwoo; Celina, Mathias C.; Allers, Joshua P.; Park, Sungmin; Chen, Liwen; Martinez, Estevan J.; Unangst, Jaclynn L.

A series of networks is introduced with systematically varied network heterogeneity and high overall values of average glass transition temperature (Tg), based on polymerization of rigid acrylate and aromatic thiol monomers. The curing behavior, chain dynamics, and microstructure of these networks were investigated through a combination of dynamic mechanical analysis and infrared spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and x-ray scattering, respectively. The maximum Tg achieved during cure can be related to the breadth of the mechanical loss tangent, as others have previously suggested, as well as the temperature dependence of the chain dynamics in the network as monitored by 1H NMR. In addition, the microstructures of the networks are characterized by periodic, fractal microgels with characteristic length scales of ca. 20–40 nm. Intriguingly, this structural motif persists in the more homogeneous networks exhibiting comparatively narrow glass transitions and chain dynamics, indicating that dynamically homogeneous networks can still exhibit significant compositional heterogeneity at the mesoscale.

More Details

Extended use of face masks during the COVID-19 pandemic - Thermal conditioning and spray-on surface disinfection

Polymer Degradation and Stability

Celina, Mathias C.; Martinez, Estevan J.; Omana, Michael A.; Sanchez, A.L.; Wiemann, Dora K.; Tezak, Matthew T.; Dargaville, Tim R.

The current COVID-19 pandemic has resulted in globally constrained supplies for face masks and personal protective equipment (PPE). Production capacity is limited in many countries and the future course of the pandemic will likely continue with shortages for high quality masks and PPE in the foreseeable future. Hence, expectations are that mask reuse, extended wear and similar approaches will enhance the availability of personal protective measures. Repeated thermal disinfection could be an important option and likely easier implemented in some situations, at least on the small scale, than UV illumination, irradiation or hydrogen peroxide vapor exposure. An overview on thermal responses and ongoing filtration performance of multiple face mask types is provided. Most masks have adequate material properties to survive a few cycles (i.e. 30 min disinfection steps) of thermal exposure in the 75°C regime. Some are more easily affected, as seen by the fusing of plastic liner or warping, given that preferred conditioning temperatures are near the softening point for some of the plastics and fibers used in these masks. Hence adequate temperature control is equally important. As guidance, disinfectants sprayed via dilute solutions maintain a surface presence over extended time at 25 and 37°C. Some spray-on alcohol-based solutions containing disinfectants were gently applied to the top surface of masks. Neither moderate thermal aging (less than 24 h at 80 and 95°C) nor gentle application of surface disinfectant sprays resulted in measurable loss of mask filter performance. Subject to bio-medical concurrence (additional checks for virus kill efficiency) and the use of low risk non-toxic disinfectants, such strategies, either individually or combined, by offering additional anti-viral properties or short term refreshing, may complement reuse options of professional masks or the now ubiquitous custom-made face masks with their often unknown filtration effectiveness.

More Details

Self Assembly–Assisted Additive Manufacturing: Direct Ink Write 3D Printing of Epoxy–Amine Thermosets

Macromolecular Materials and Engineering

Manning, Kylie M.; Wyatt, Nicholas B.; Hughes, Lindsey G.; Cook, Adam W.; Giron, Nicholas H.; Martinez, Estevan J.; Campbell, Christopher C.; Celina, Mathias C.

The use of self-assembling, pre-polymer materials in 3D printing is rare, due to difficulties of facilitating printing with low molecular weight species and preserving their reactivity and/or functions on the macroscale. Akin to 3D printing of small molecules, examples of extrusion-based printing of pre-polymer thermosets are uncommon, arising from their limited rheological tuneability and slow reactions kinetics. The direct ink write (DIW) 3D printing of a two-part resin, Epon 828 and Jeffamine D230, using a self-assembly approach is reported. Through the addition of self-assembling, ureidopyrimidinone-modified Jeffamine D230 and nanoclay filler, suitable viscoelastic properties are obtained, enabling 3D printing of the epoxy–amine pre-polymer resin. A significant increase in viscosity is observed, with an infinite shear rate viscosity of approximately two orders of magnitude higher than control resins, in addition to, an increase in yield strength and thixotropic behavior. Printing of simple geometries is demonstrated with parts showing excellent interlayer adhesion, unachievable using control resins.

More Details
14 Results
14 Results