Management of spent nuclear fuel and high-level radioactive waste consists of three main phases – storage, transportation, and disposal – commonly referred to as the back end of the nuclear fuel cycle. Current practice for commercial spent nuclear fuel management in the United States (US) includes temporary storage of spent fuel in both pools and dry storage systems at operating or shutdown nuclear power plants. Storage pools are filling to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler spent fuel from pools into dry storage. Unless a repository becomes available that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 136,000 metric tons of spent fuel in dry storage systems by mid-century, when the last plants in the current reactor fleet are decommissioned. Current designs for dry storage systems rely on large multi-assembly canisters, the most common of which are so-called “dual-purpose canisters” (DPCs). DPCs are certified for both storage and transportation, but are not designed or licensed for permanent disposal. The large capacity (greater number of spent fuel assemblies) of these canisters can lead to higher canister temperatures, which can delay transportation and/or complicate disposal. This current management practice, in which the utilities continue loading an ever-increasing inventory of larger DPCs, does not emphasize integration among storage, transportation, and disposal. This lack of integration does not cause safety issues, but it does lead to a suboptimal system that increases costs, complicates storage and transportation operations, and limits options for permanent disposal. This paper describes strategies for improving integration of management practices in the US across the entire back end of the nuclear fuel cycle. The complex interactions between storage, transportation, and disposal make a single optimal solution unlikely. However, efforts to integrate various phases of nuclear waste management can have the greatest impact if they begin promptly and continue to evolve throughout the remaining life of the current fuel cycle. A key factor that influences the path forward for integration of nuclear waste management practices is the identification of the timing and location for a repository. The most cost-effective path forward would be to open a repository by mid-century with the capability to directly dispose of DPCs without repackaging the spent fuel into disposalready canisters. Options that involve repackaging of spent fuel from DPCs into disposalready canisters or that delay the repository opening significantly beyond mid-century could add 10s of billions of dollars to the total system life cycle cost.
This is a progress report on thermal modeling for dual-purpose canister (DPCs) direct disposal that covers several available calculation methods and addresses creep and temperature-dependent properties in a salt repository. Three modeling approaches are demonstrated: A semi-analytical calculation method that uses linear solutions with superposition and imaging, to represent a central waste package in a larger array; A finite difference model of coupled thermal creep, implemented in FLAC2D; and An integrated finite difference thermal-hydrologic modeling approach for repositories in different generic host media, implemented in PFLOTRAN. These approaches are at different levels of maturity, and future work is expected to add refinements and establish the best applications for each.
The U.S. Department of Energy supports an R&D program for evaluating approaches to direct disposal of commercial spent fuel in dual-purpose canisters (DPCs). The major thrusts include alternative measures for treating the possibility of internal criticality events in DPC-based waste packages after thousands of years in a repository. These measures include: 1) injectable fillers, 2) analysis of the consequences of criticality events in a repository should they occur, and 3) options for modifying fuel assemblies or baskets in DPCs at the time they are loaded. This report presents a snapshot of progress in each of these areas drawing on deliverable reports generated during FY18 through FY20. Another aspect of the R&D program is to develop concepts of operations for repositories that would permanently dispose of DPC-based waste packages, considering different generic host media (not site-specific). The idea is to examine whether the disposal of large, heavy, heat-generating waste packages is technically feasible, and to identify the engineering challenges that would arise during implementation of the different disposal concepts. Descriptions of repository features are presented for repositories in salt media, argillite (clay/shale) media, crystalline (e.g., granitic) media, and unsaturated media (considering either alluvium or hard rock). Thermal management criteria for each concept are presented in terms of the maximum waste package thermal power at emplacement, when the repository could be opened, and the duration of repository emplacement operations. The overall message of this report is that direct disposal of commercial spent fuel is technically feasible in different types of geologic host media, but that thermal management and postclosure criticality impose different constraints on each concept. Engineering challenges are recognized and discussed. Treatment of postclosure criticality is identified as an important technical question that receives the majority of attention in the R&D program.
Developing and evaluating approaches for direct geologic disposal of commercial spent nuclear fuel (SNF) in dual-purpose canisters (DPCs) is a cross-cutting multi-disciplinary activity that is directly tied to the implementation of DPCs by the nuclear industry. The ultimate goal of the DPC direct disposal R&D program is to facilitate and maximize safe, cost-effective, licensed direct disposal. Independent Technical Review (ITR) is needed to maximize the impact of the R&D program on future implementation. The review will involve a team of experts representing the nuclear industry, repository sciences, and licensing. The team will be charged to review a set of representative technical reports and other information, and answer a set of questions that focus on R&D steering.
By 2030 about half of all spent nuclear fuel (SNF) arising from the current fleet of commercial power plants will be in dual-purpose canisters (DPCs), which are designed for storage and transportation but not for disposal. As an alternative to complete repackaging of the fuel for disposal, considerable cost savings and lower worker dose could be realized by directly disposing of this SNF in DPCs. The principal technical consideration is criticality control in a geologic repository, because the DPCs are large and depend on neutron absorbing basket components for criticality control. Neutron absorbing materials are generally aluminum-based, and under disposal conditions can degrade after a few hundred years contact with ground water. Simple modifications to the SNF assemblies or the DPC baskets could help to achieve direct disposal, and this is one of the approaches being studied to address the possibility of disposal criticality (SNL 2020a). Five fuel/basket modification concepts have been proposed (SNL 2020b) and a virtual workshop was conducted to solicit review and feedback on these concepts. The proposed solutions are: 1) zone loading of DPCs to limit reactivity, 2) replacing absorber plates with advanced neutron absorbing (ANA) material, 3) adding disposal control rods to pressurized water reactor (PWR) assemblies, 4) rechanneling boiling water reactor (BWR) assemblies with ANA material, and 5) basket insert plates (chevron inserts) made from ANA material. The presentations from the workshop are provided in this report, and the workshop discussions are summarized. This information includes prioritization of the proposed fuel/basket modification solutions, and prioritization of the associated model development, validation testing, and quality assurance activities. Information documented in this report will help to steer research and development efforts at Sandia National Laboratories, Oak Ridge National Laboratory, and Idaho National Laboratory that support the U.S. Department of Energy, Office of Nuclear Energy, Spent Fuel and Waste Science and Technology program
Disposal of large, heat-generating waste packages containing the equivalent of 21 pressurized water reactor (PWR) assemblies or more is among the disposal concepts under investigation for a future repository for spent nuclear fuel (SNF) in the United States. Without a long (>200 years) surface storage period, disposal of 21-PWR or larger waste packages (especially if they contain high-burnup fuel) would result in in-drift and near-field temperatures considerably higher than considered in previous generic reference cases that assume either 4-PWR or 12-PWR waste packages (Jové Colón et al. 2014; Mariner et al. 2015; 2017). Sevougian et al. (2019c) identified high-temperature process understanding as a key research and development (R&D) area for the Spent Fuel and Waste Science and Technology (SFWST) Campaign. A two-day workshop in February 2020 brought together campaign scientists with expertise in geology, geochemistry, geomechanics, engineered barriers, waste forms, and corrosion processes to begin integrated development of a high-temperature reference case for disposal of SNF in a mined repository in a shale host rock. Building on the progress made in the workshop, the study team further explored the concepts and processes needed to form the basis for a high-temperature shale repository reference case. The results are described in this report and summarized..
Sandia National Laboratories has hired Itasca Consulting Group, Inc., the authors of the FLAC3D geomechanics software, to couple FLAC3D with TOUGH3, the porous media flow solver. The work is being done to enable a coupled mechanical-thermal-hydraulic analysis of a potential criticality event in a dual purpose cannister (DPC). The U.S. Department of Energy Office of Spent Fuel and Waste Science & Technology is investigating the performance of DPCs for direct geological disposal of spent nuclear fuel. Post closure criticality control is an important aspect of this investigation. Over geological timescales, it is envisioned that the canister and canister overpack will develop fractures due to stress corrosion processes. A breach in the canister could allow groundwater to fill the canister. Fresh water is a neutron moderator; thus, if the canister internals and fuel assemblies have been sufficiently degraded, a criticality event could occur. Such an event would release enough energy to boil the water between the fuel rods and pressurize the cannister. This internal pressurization may cause the initial fractures in the canister and overpack to grow. It is important to understand the change in hydraulic transmissivity between the canister and surroundings for two reasons: first, because it may control the potential for and frequency of subsequent criticality events; second, because it will control the release of radionuclides from the canister. The motivation for this work is to better understand the potential for periodic criticality events, cannister damage, and release of radionuclides during a criticality event in a DPC.
Commercial spent nuclear fuel (SNF) is accumulating at 72 sites across the U.S., at the rate of about 2,000 metric tons of uranium (MTU) per year. There are currently more than 2,700 dualpurpose canisters (DPCs) loaded with SNF, which are designed for storage and transportation but not disposal. If current storage practices continue, about half the eventual total U.S. SNF inventory will be in about 5,500 dry storage systems by 2035, with the entire inventory stored in 10,000 or more by 2060. The quantity of SNF in DPCs is now much greater than that anticipated in the past, leading the DOE to investigate the technical feasibility of direct disposal of SNF in DPCs. Studies in 2013-2015 concluded that the main technical challenges for disposal of SNF in DPCs are thermal management, handling and emplacement of large, heavy waste packages, and postclosure criticality control (Hardin et al. 2015). Of these, postclosure criticality control is the most challenging, and the R&D needed for this aspect of DPC direct disposal is the primary focus of this report.
This report presents a generic (i.e., site-independent) preliminary plan for drilling, testing, sampling, and analyzing data for a deep characterization borehole drilled into crystalline basement for the purposes of assessing the suitability of a site for deep borehole disposal (DBD). This research was performed as part of the deep borehole field test (DBFT). Based on revised U.S. Department of Energy (DOE) priorities in mid-2017, the DBFT and other research related to a DBD option was discontinued; ongoing work and documentation were closed out by the end of fiscal year (FY) 2017. This report was initiated as part of the DBFT and documented as an incomplete draft at the end of FY 2017. The report was finalized by Sandia National Laboratories in FY2018 without DOE funding, subsequent to the termination of the DBFT, and published in FY2019. This report presents a possible sampling, testing, and analysis campaign that could be carried out as part of a future project to quantify geochemical, geomechanical, geothermal, and geohydrologic conditions encountered at depths up to 5 km in crystalline basement.
This report presents a preclosure radiological safety assessment for deep borehole disposal (DBD) of nuclear wastes. The primary purpose of the safety assessment is to identify risk factors for disposal operations, to aid in design for an engineering demonstration of technology for DBD. The assessment is based on a conceptual design for disposal packages and borehole systems that was developed previously. It considers operational steps that could be used for actual DBD, with internal and external initiating off-normal events, to develop insights that can be applied to an engineering demonstration that would be performed without using any form of nuclear waste. This research was performed as part of the deep borehole field test (DBFT). Based on revised U.S. Department of Energy (DOE) priorities in mid-2017, the DBFT and other research related to a DBD option was discontinued; ongoing work and documentation were closed out by the end of fiscal year (FY) 2017. This report was initiated as part of the DBFT and documented as an incomplete draft at the end of FY 2017. The report was finalized by Sandia National Laboratories in FY2018 without DOE funding, subsequent to the termination of the DBFT, and published in FY2019. iii
This report is the deliverable M2SF-18SN010305026 FY18 Summary Update on the Feasibility of Direct Disposal of SNF in Existing DPCs. It reports on work done throughout fiscal year (FY) 2018, on work planned at the beginning of that FY, consisting of R&D activities for: 1) injectable fillers that could be used in dual-purpose canisters to prevent postclosure criticality in a geologic repository, and 2) as-loaded DPC data gathering and criticality. The work reported here was performed by Sandia National Laboratories and Oak Ridge National Laboratory. Appropriate attribution to source documents is provided in the text, tables, and figures below. Additional R&D on direct disposal of existing DPCs was planned and funded in mid-FY, and the associated reporting is separate from this milestone. Additional discussion of that new scope and how it implements findings from an independent expert review of the fillers R&D program (Section 10) is provided in the Summary (Section 11).
There are currently 2,462 dual-purpose canisters (DPCs) containing spent nuclear fuel (SNF) across the United States. Repackaging DPCs into specialized disposal canisters can be financially and operationally costly with undue risks. Technical feasibility of direct disposal of DPCs has been evaluated by the Department of Energy (DOE) and industry over the past 15 years. A concerted effort most recently conducted by DOE Office of Nuclear Energy (NE) Spent Fuel and Waste Science and Technology (SFWST) research and development (R&D) programs is evaluating the technical feasibility of direct disposal of DPCs in various geologies. This report focuses on reviewing the work completed by SFWST for the criticality considerations of DPC geologic disposal. Disposal of DPCs is not only viable, but assured from a technical and assumed regulatory perspective (similar to 10 CFR 63). The analysis approach should be multi-faceted to ensure effective implementation of a licensing basis. Recommendations are provided in this report that could enhance the bases for direct disposal of DPCs by exploiting all technically attainable and regulatorily defensible options. The review objectives, including addressing several questions regarding the value of accumulating asloaded fuel and DPC design data, suitability of DPC designs for disposal, and reasonable modifications for loading of DPCs that could facilitate eventual disposal, are also addressed in this report.
This report supplements Joint Workplan on Filler Investigations for DPCs (SNL 2017) providing new and some corrected information for use in planning Phase 1 laboratory testing of slurry cements as possible DPC fillers. The scope description is to "Describe a complete laboratory testing program for filler composition, delivery, emplacement in surrogate canisters, and post-test examination. To the extent possible specify filler material and equipment sources." This report includes results from an independent expert review (Dr. Arun Wagh, retired from Argonne National Laboratory and contracted by Sandia) that helped to narrow the range of cement types for consideration, and to provide further guidance on mix variations to optimize injectability, durability, and other aspects of filler performance.
This workplan addresses filler attributes (i.e., possible requirements), assumptions needed for analysis, selection of filler materials, testing needs, and a long-range perspective on R&D activities leading to filler demonstration and a safety basis for implementation.
The primary purpose of the preclosure radiological safety assessment (that this document supports) is to identify risk factors for disposal operations, to aid in design for the deep borehole field test (DBFT) engineering demonstration.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
Disposal of used nuclear fuel and vitrified high-level radioactive waste (UNF and HLW) in a mined geologic repository is the preferred alternative for the countries with the largest inventories of UNF and HLW. However, deep borehole disposal (DBD) may be especially well suited for countries with small nuclear power programs because DBD is relatively inexpensive and scalable; whereas the threshold costs to develop a mined geologic repository are high and do not scale with the inventory. Historically, options for countries with small nuclear power programs (programs that individually generate only a few percent of the world total mass of UNF and/or HLW) have been: (1) to return the UNF to the supplier, (2) to have the SNF reprocessed, with return and incountry disposal of the resulting vitrified HLW in a mined geologic repository, (3) to develop in-country, direct disposal of the UNF in a mined geologic repository or (4) to send the UNF to a hypothetical multi-national mined geologic repository for disposal. However, in-country DBD is likely to be least expensive, and technically achievable with existing technology. In-country DBD could also be a viable alternative for disposal of used fuel assemblies from decommissioned research reactors in developing countries.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
This paper considers concepts for disposal of canistered high-level (radioactive) waste (HLW) in large diameter deep boreholes. Vitrified HLW pour canisters are limited in diameter to promote glass cooling, and constitute a large potential application for borehole disposal where diameter is constrained. The objective for disposal would be waste packages with diameter of 22 to 29 inches, which could encompass all existing and projected HLW glass inventory in the United States. Deep, large diameter boreholes of the sizes needed have been successfully drilled, and we identify other potentially effective designs. The depth of disposal boreholes would be site-specific, and need not be as deep as the 5 km being investigated in the Deep Borehole Field Test. For example, a 0.91 m (36 inch) diameter borehole drilled to 3 km could be used for disposal from 2.5 to 3 km (8, 200 to 9, 840 ft). The engineering feasibility of such boreholes is greater today than was concluded by earlier studies done in Sweden and the United States. Moreover, the disposal concept and generic safety case have evolved to a point where borehole construction need not be as elaborate as previously assumed. Each borehole in the example could accommodate approximately 100 waste packages containing canisters of vitrified HLW. Emplacement of the packages would be through a 32-inch (0.81 m) guidance casing, installed in two sections to reduce hoisting loads, and forming a continuous pathway from the surface to total depth. Above the disposal zone would be a nominal 1 km (3, 280-ft) seal interval, similar to previously published concepts. Following those concept studies, the seal system would consist of alternating lifts of swelling clay, backfill and cement. Above the seal zone the borehole would be plugged with cement in the conventional manner for oil-and-gas wells. The function of seals in deep borehole disposal is to maintain the pre-drilling hydrologic regime in the crystalline basement, where groundwater is increasingly saline, stagnant, and ancient. Seals would resist fluid movement and radionuclide transport during an early period of waste heating, but after cooling little fluid movement is expected. Thus, the function of seals could be less important with HLW that has low heat output, and sealing requirements could be limited. The safety case for deep borehole disposal relies on the prevalence of groundwater that is increasingly saline with depth, stagnant, and ancient, in crystalline basement rock that has low bulk permeability and is isolated from surface processes. The minimum depth for disposal depends on sitespecific factors, and may be less than the 2.5 km example. Rough-order-of-magnitude cost estimates show that deep borehole disposal of HLW would be cost-competitive with the lowest cost mine repository options. Thinner overburden, and shallower development of conditions favorable to waste isolation, could make drilling of large-diameter disposal boreholes even more cost effective. The dimensions of the disposal zone and seal zone would be site specific, and would be adjusted to ensure that both are situated in unaltered crystalline basement rock.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
The Deep Borehole Field Test (DBFT) is a planned multi-year project led by the US Department of Energy's Office of Nuclear Energy to drill two boreholes to 5 km total depth into crystalline basement in the continental US. The purpose of the first characterization borehole is to demonstrate the ability to characterize in situ formation fluids through sampling and perform downhole hydraulic testing to demonstrate groundwater from 3 to 5 km depth is old and isolated from the atmosphere. The purpose of the second larger-diameter borehole is to demonstrate safe surface and downhole handling procedures. This paper details many of the drilling, testing, and characterization activities planned in the first smaller-diameter characterization borehole.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
The Deep Borehole Field Test will include demonstration of the emplacement and retrieval of test waste packages (containing no waste) in a 5 km deep borehole drilled into the crystalline basement. A conceptual design for packaging, surface handling and transfer equipment, and borehole emplacement was developed in anticipation of the demonstration project. Test packages are designed to withstand external pressure greater than 65 MPa, at temperature up to 170°C. Two packaging concepts were developed: 1) flasktype for granular waste, and 2) internal semi-flush type for waste that is pre-canistered in cylindrical containers. Oilfield casing materials and sealing connections would be selected giving a safety factor of 2.0 against yield. Packages would have threaded fittings top and bottom for attachment of impact limiters and latch fittings. Packages would be lowered one-at-a-time into the borehole on electric wireline. This offers important safety advantages over using drill pipe or coiled tubing to lower waste packages, because it avoids the possibility of dropping a heavy assembly in the borehole. An electromechanical latch would release each package, or reconnect for retrieval. Frequency of waste package delivery to a disposal site could be the effective limit on emplacement throughput. Packages would be delivered in a shielded Type B transportation cask and transferred to a shielded, doubleended transfer cask on site. The transfer cask would be upended over the borehole and secured to the wellhead. The transfer cask would become an integral part of the pressure control envelope for well pressure control. Blowout preventers can be incorporated as needed for regulatory compliance. Operational safety has been assessed with respect to normal operations, and off-normal events that could cause package breach in the borehole. Worker exposures can be limited by using standard industry practices for nuclear material handling. The waste packages would effectively be robust pressure vessels that will not breach if dropped during surface handling. The possibility of package breach in the borehole during emplacement can be effectively eliminated using impact limiters on every package.
This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration.
This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.
As the title suggests, this report provides a summary of the status and progress for the Preliminary Design Concepts Work Package. Described herein are design concepts and thermal analysis for crystalline and salt host media. The report concludes that thermal management of defense waste, including the relatively small subset of high thermal output waste packages, is readily achievable. Another important conclusion pertains to engineering feasibility, and design concepts presented herein are based upon established and existing elements and/or designs. The multipack configuration options for the crystalline host media pose the greatest engineering challenges, as these designs involve large, heavy waste packages that pose specific challenges with respect to handling and emplacement. Defense-related Spent Nuclear Fuel (DSNF) presents issues for post-closure criticality control, and a key recommendation made herein relates to the need for special packaging design that includes neutron-absorbing material for the DSNF. Lastly, this report finds that the preliminary design options discussed are tenable for operational and post-closure safety, owing to the fact that these concepts have been derived from other published and well-studied repository designs.
The subject report from High Bridge Associates (HBA) was issued on March 2, 2016, in reaction to a U.S. Department of Energy (DOE) program decision to pursue down-blending of surplus Pu and geologic disposal at the Waste Isolation Pilot Plant (WIPP). Sandia National Laboratories was requested by the DOE to review the technical arguments presented in the HBA report. Specifically, this review is organized around three technical topics: criticality safety, radiological release limits, and thermal impacts. Questions raised by the report pertaining to legal and regulatory requirements, safeguards and security, international agreements, and costing of alternatives, are beyond the scope of this review.
This study considers the feasibility of large diameter deep boreholes for waste disposal. The conceptual approach considers examples of deep large diameter boreholes that have been successfully drilled, and also other deep borehole designs proposed in the literature. The objective for large diameter boreholes would be disposal of waste packages with diameters of 22 to 29 inches, which could enable disposal of waste forms such as existing vitrified high level waste. A large-diameter deep borehole design option would also be amenable to other waste forms including calcine waste, treated Na-bonded and Na-bearing waste, and Cs and Sr capsules.
Sandia National Laboratories has begun research on the potential use of deep boreholes for the dis¬posal of radioactive waste. Characterization activities will focus on measurements and samples that are important for evaluating the long-term iso¬lation capability of the deep borehole disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable deep borehole field test (DBFT) site and a site management contractor is now under way.
At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).
At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).
Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predict that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.
This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approach to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).
This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.
This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low-profile threaded connections at each end. The internal-flush design would be suitable for loading waste that arrives from the originating site in weld-sealed, cylindrical canisters. Internal, tapered plugs with sealing filet welds would seal the tubing at each end. The taper would be precisely machined onto both the tubing and the plug, producing a metal-metal sealing surface that is compressed as the package is subjected to hydrostatic pressure. The lower plug would be welded in place before loading, while the upper plug would be placed and welded after loading. Conceptual Waste Packaging Options for Deep Borehole Disposal July 30, 2015 iv Threaded connections between packages would allow emplacement singly or in strings screwed together at the disposal site. For emplacement on a drill string the drill pipe would be connected directly into the top package of a string (using an adapter sub to mate with premium semi-flush tubing threads). Alternatively, for wireline emplacement the same package designs could be emplaced singly using a sub with wireline latch, on the upper end. Threaded connections on the bottom of the lowermost package would allow attachment of a crush box, instrumentation, etc.
This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.
This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has benefited greatly from review principally by Steve Pye, and also by Paul Eslinger, Dave Sevougian and Jiann Su.
This document provides the basis for requirements in the current version of Performance Specification for Standardized Transportation, Aging, and Disposal Canister Systems, (FCRD-NFST-2014-0000579) that are driven by storage and geologic disposal considerations. Performance requirements for the Standardized Transportation, Aging, and Disposal (STAD) canister are given in Section 3.1 of that report. Here, the requirements are reviewed and the rationale for each provided. Note that, while FCRD-NFST-2014-0000579 provides performance specifications for other components of the STAD storage system (e.g. storage overpack, transfer and transportation casks, and others), these have no impact on the canister performance during disposal, and are not discussed here.
This report provides two sets of calculations not presented in previous reports on the technical feasibility of spent nuclear fuel (SNF) disposal directly in dual-purpose canisters (DPCs): 1) thermal calculations for reference disposal concepts using larger 37-PWR size DPC-based waste packages, and 2) analysis and thermal calculations for underground vault-type storage and eventual disposal of DPCs. The reader is referred to the earlier reports (Hardin et al. 2011, 2012, 2013; Hardin and Voegele 2013) for contextual information on DPC direct disposal alternatives.
The amount of brine present in domal salt formation is far less than in bedded salts (e.g., 0.01 to 0.1% compared with 1 to 3%). In salt domes, shear deformation associated with diapirism has caused existing brine to coalesce, leading to flow and expulsion. Brine migration behavior was investigated in bedded salt at WIPP (Nowak and McTigue 1987, SAND87-0880), and in domal salt at Asse (Coyle et al. 1987, BMI/ONWI-624). Test methods were not standardized, and the tests involved large diameter boreholes (17 to 36 in. diameter) and large apparatus. The tested intervals were proximal to mined openings (within approximately 1 diameter) where in situ stresses are redistributed due to excavation. The tests showed that (1) brine inflow rates can range over at least 2 orders of magnitude for domal vs. bedded salt, (2) that brine inflow is strongly associated with clay and interbedded permeable layers in bedded salt, and (3) that measurement systems can readily collect very small quantities of moisture over time frames of 2 years or longer. Brine inflow rates declined slightly with time in both test series, but neither series approached a state of apparent depletion. This range of flow magnitude could be significant to repository design and performance assessment, especially if inflow rates can be predicted using stratigraphic and geomechanical inputs, and can be shown to approach zero in a predictable manner.
Deep Borehole Disposal (DBD) of radioactive waste has some clear advantages over mined repositories, including incremental construction and loading, enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Unfavorable features for a DBD site include upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection from the waste disposal zone to the shallow subsurface, and significant probability of future volcanic activity. Site characterization activities would encompass geomechanical (i.e., rock stress state, fluid pressure, and faulting), geological (i.e., both overburden and bedrock lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), chemical (i.e., rock and fluid interaction), and socioeconomic (i.e., likelihood for human intrusion) aspects. For a planned Deep Borehole Field Test (DBFT), site features and/or physical processes would be evaluated using both direct (i.e., sampling and in-hole testing) and indirect (i.e., surface and borehole geophysical) methods for efficient and effective characterization. Surface-based characterization would be used to guide the exploratory drilling program, once a candidate DBFT site has been selected. Borehole based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, petrology, and water chemistry) with depth, and to develop material and system parameters relevant for numerical simulation. While the site design of DBD could involve an array of disposal boreholes, it may not be necessary to characterize each borehole in detail. Characterization strategies will be developed in the DBFT that establish disposal system safety sufficient for licensing a disposal array.
While deep borehole disposal of nuclear waste should rely primarily on off-the-shelf technologies pioneered by the oil and gas and geothermal industries, the development of new science and technology will remain important. Key knowledge gaps have been outlined in the research roadmap for deep boreholes (B. Arnold et al, 2012, Research, Development, and Demonstration Roadmap for Deep Borehole Disposal, Sandia National Laboratories, SAND2012-8527P) and in a recent Deep Borehole Science Needs Workshop. Characterizing deep crystalline basement, understanding the nature and role of deep fractures, more precisely age-dating deep groundwaters, and demonstrating long-term performance of seals are all important topics of interest. Overlapping deep borehole and enhanced geothermal technology needs include: quantification of seal material performance/failure, stress measurement beyond the borehole, advanced drilling and completion tools, and better subsurface sensors. A deep borehole demonstration has the potential to trigger more focused study of deep hydrology, high temperature brine-rock interaction, and thermomechanical behavior.
15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015
Hardin, Ernest H.; Kalinina, Elena; Clark, Robert; Howard, Robert; Banerjee, Kaushik; Scaglione, John; Carter, Joe
Commercial spent nuclear fuel (SNF) continues to accumulate in dry storage, sealed into welded dual-purpose canisters (DPCs). Direct disposal of DPCs, without cutting them open and re-packaging the fuel, is technically feasible at least for some DPCs and some disposal concepts. Options for DPC direct disposal are taking form, based on an ongoing study by the U.S. Department of Energy. Direct disposal of DPCs should be viewed as one part of a diverse fuel management system that will eventually switch to loading standardized multi-purpose canisters (MPCs). Nearly all DPCs that are loaded before this switch could be directly disposed depending on the disposal environment selected. DPC direct disposal options have been developed for salt, crystalline and sedimentary host media. These options are suited to different populations of DPCs, ranging from those containing older, colder fuel (e.g., in sedimentary media) to all DPCs (salt). The timing of DPC use offers an opportunity to simplify the SNF management system. Commercial SNF will be generated in the U.S. for more than 90 years, whereas facility lifetimes are typically on the order of 50 years. Efficiencies could be realized by implementing disposal in "campaigns. " Additional accumulation of DPCs over the next 10 to 20 years, followed by a transition to MPCs, would define two such campaigns. A repository could first be constructed for MPCs, and disposal of DPCs could be deferred and addressed later using new, dedicated facilities. During the interim storage period DPC thermal output would decay, further expanding disposal options.
Hardin, Ernest H.; Banerjee, Kaushik B.; Howard, Robert H.; Carter, Joe C.; Clark, Robert E.; Clarity, Justin B.; Kalinina, Elena A.; Scaglione, John S.
After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.
This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to establish corrosion rates and component lifetimes. Finally, it is unlikely that the aluminum-based neutron absorber materials that are commonly used in existing DPCs would survive for 10,000 years in disposal environments, because the aluminum will act as a sacrificial anode for the steel. We recommend additional testing of borated and Gd-bearing stainless steels, to establish general and localized corrosion resistance in repository-relevant environmental conditions.
This report reviews the art and practice of excavating and constructing underground facilities in clay/shale media, as part of a multi-year evaluation of the technical feasibility of direct disposal of spent nuclear fuel (SNF) in dual-purpose canisters (DPCs). The purpose is to review worldwide examples of large-scale excavations in clay/shale media, the methods used for excavation and constructi on, and the costs. It is anticipated that this information will help to show the feasibility of construction for a deep geologic respository for (on the order of) 10,000 large, heavy, heat-generating waste packages. This report will refine the clay/shale disposal concept for DPC -based waste packages, in support of future studies that include cost estimation.
With renewed interest in disposal of heat-generating waste in bedded or domal salt formations, scoping analyses were conducted to estimate rates of waste package vertical movement. Vertical movement is found to result from thermal expansion, from upward creep or heave of the near-field salt, and from downward buoyant forces on the waste package. A two-pronged analysis approach was used, with thermal-mechanical creep modeling, and coupled thermal-viscous flow modeling. The thermal-mechanical approach used well-studied salt constitutive models, while the thermal-viscous approach represented the salt as a highly viscous fluid. The Sierra suite of coupled simulation codes was used for both approaches. The waste package in all simulations was a right-circular cylinder with the density of steel, in horizontal orientation. A time-decaying heat generation function was used to represent commercial spent fuel with typical burnup and 50-year age. Results from the thermal-mechanical base case showed approximately 27 cm initial uplift of the package, followed by gradual relaxation closely following the calculated temperature history. A similar displacement history was obtained with the package density set equal to that of salt. The slight difference in these runs is attributable to buoyant displacement (sinking) and is on the order of 1 mm in 2,000 years. Without heat generation the displacement stabilizes at a fraction of millimeter after a few hundred years. Results from thermal-viscous model were similar, except that the rate of sinking was constant after cooldown, at approximately 0.15 mm per 1,000 yr. In summary, all calculations showed vertical movement on the order of 1 mm or less in 2,000 yr, including calculations using well-established constitutive models for temperature-dependent salt deformation. Based on this finding, displacement of waste packages in a salt repository is not a significant repository performance issue.
A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations. Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.
Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in a repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.
Published results of performance assessments for deep geologic disposal of high-level radioactive waste and spent nuclear fuel provide insight into those aspects of the waste form that are potentially important to the long-term performance of a repository system. Alternative waste forms, such as might result from new technologies for processing spent fuel and advances in nuclear reactor design, have the potential to affect the long-term performance of a geologic repository. This paper reviews relevant results of existing performance assessments for a range of disposal concepts and provides observations about how hypothetical modifications to waste characteristics (e.g., changes in radionuclide inventory, thermal loading, and durability of waste forms) might impact results of the performance assessment models. Disposal concepts considered include geologic repositories in both saturated and unsaturated environments. Specifically, we consider four recent performance assessments as representative of a range of disposal concepts. We examine the extent to which results of these performance assessments are affected by (i) thermal loading of the waste proposed for disposal; (ii) mechanical and chemical lifetime of the waste form; and (iii) radionuclide content of the waste. We find that peak subsurface temperature generally is a constraint that can be met through engineering solutions and that processing of wastes to reduce thermal power may enable more efficient use of repositories rather than improved repository performance. We observe that the rate of radionuclide release is often limited by geologic or chemical processes other than waste form degradation. Thus, the effects on repository performance of extending waste-form lifetime may be relatively small unless the waste form lifetime becomes sufficiently long relative to the period of repository performance. Finally, we find that changes to radionuclide content of waste (e.g., by separation or transmutation processes) do not in general correspond to proportional effects on repository performance. Rather, the effect of changes to radionuclide content depends on the relative mobility of various radionuclides through the repository system, and consequently on repository geology and geochemistry.
Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.
This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.