TPS Modeling in Hypersonic Flow
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly the POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.
This report summarizes FY16 progress towards enabling uncertainty quantification for compress- ible cavity simulations using model order reduction (MOR). The targeted application is the quan- tification of the captive-carry environment for the design and qualification of nuclear weapons systems. To accurately simulate this scenario, Large Eddy Simulations (LES) require very fine meshes and long run times, which lead to week -long runs even on parallel state-of-the-art super- computers. MOR can reduce substantially the CPU-time requirement for these simulations. We describe two approaches for model order reduction for nonlinear systems, which can yield sig- nificant speed-ups when combined with hyper-reduction: the Proper Orthogonal Decomposition (POD)/Galerkin approach and the POD/Least-Squares Petrov Galerkin (LSPG) approach. The im- plementation of these methods within the in-house compressible flow solver SPARC is discussed. Next, a method for stabilizing and enhancing low-dimensional reduced bases that was developed as a part of this project is detailed. This approach is based on a premise termed "minimal sub- space rotation", and has the advantage of yielding ROMs that are more stable and accurate for long-time compressible cavity simulations. Numerical results for some laminar cavity problems aimed at gauging the viability of the proposed model reduction methodologies are presented and discussed.