Publications

5 Results
Skip to search filters

FY2022 Status Report: Cold Spray for Canister SCC Mitigation and Repair

Schaller, Rebecca S.; Karasz, Erin K.; Montoya-X, Timothy M.; Taylor, Jason M.; Ross, Kenneth R.

This progress report describes work performed during FY22 at Sandia National Laboratories (SNL) to assess the corrosion performance of cold spray coatings to enable optimization of cold spray for the purposes of mitigation and/or repair of potentially susceptible regions, corrosion, or stress corrosion cracking (SCC) in austenitic stainless steel for spent nuclear fuel (SNF) storage. Of particular concern is SCC, by which a through-wall crack could potentially form in a canister outer wall over time intervals that may be shorter than possible dry storage times. In FY21, initial corrosion explorations of cold spray coating were evaluated and in FY22, an expanded set of cold spray coatings with in-depth analysis of post-exposure accelerated testing was explored. Additionally, relevant atmospheric exposure testing was carried out and initial results are presented herein. The corrosion attack from the accelerated testing and more realistic atmospheric exposures environments were compared to identify potentially deleterious factors for corrosion as well as help to understand the applicability of accelerated testing for cold spray optimization. This initial analysis will help to enable optimization of the corrosion resistance cold spray, one of the more promising coating and repair techniques, for potential application in an SNF environment. Learnings from both are summarized, and implications and future work are presented in this report.

More Details

Measuring the Residual Stress and Stress Corrosion Cracking Susceptibility of Additively Manufactured 316L by ASTM G36-94

Corrosion

Karasz, Erin K.; Taylor, Jason M.; Autenrieth, David M.; Reu, Phillip L.; Johnson, Kyle J.; Melia, Michael A.; Noell, Philip N.

Residual stress is a contributor to stress corrosion cracking (SCC) and a common byproduct of additive manufacturing (AM). Here the relationship between residual stress and SCC susceptibility in laser powder bed fusion AM 316L stainless steel was studied through immersion in saturated boiling magnesium chloride per ASTM G36-94. The residual stress was varied by changing the sample height for the as-built condition and additionally by heat treatments at 600°C, 800°C, and 1,200°C to control, and in some cases reduce, residual stress. In general, all samples in the as-built condition showed susceptibility to SCC with the thinner, lower residual stress samples showing shallower cracks and crack propagation occurring perpendicular to melt tracks due to local residual stress fields. The heat-treated samples showed a reduction in residual stress for the 800°C and 1,200°C samples. Both were free of cracks after >300 h of immersion in MgCl2, while the 600°C sample showed similar cracking to their as-built counterpart. Geometrically necessary dislocation (GND) density analysis indicates that the dislocation density may play a major role in the SCC susceptibility.

More Details

SNF Interim Storage Canister Corrosion and Surface Environment Investigations (FY21 Status Report)

Bryan, Charles R.; Knight, Andrew W.; Nation, Brendan L.; Montoya, Timothy M.; Karasz, Erin K.; Katona, Ryan M.; Schaller, Rebecca S.

This progress report describes work performed during FY21 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of canister materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In FY21, modeling and experimental work was performed that further defined our understanding of the potential chemical and physical environment present on canister surfaces at both marine and inland sites. Research also evaluated the relationship between the environment and the rate, extent, and morphology of corrosion, as well as the corrosion processes that occur. Finally, crack growth rate testing under relevant environmental conditions was initiated.

More Details
5 Results
5 Results