Publications

30 Results
Skip to search filters

Techno-Economic Analysis: Best Practices and Assessment Tools

Kobos, Peter H.; Drennen, Thomas E.; Outkin, Alexander V.; Webb, Erik K.; Paap, Scott M.; Wiryadinata, Steven W.

A team at Sandia National Laboratories (SNL) recognized the growing need to maintain and organize the internal community of Techno - Economic Assessment analysts at the lab . To meet this need, an internal core team identified a working group of experienced, new, and future analysts to: 1) document TEA best practices; 2) identify existing resources at Sandia and elsewhere; and 3) identify gaps in our existing capabilities . Sandia has a long history of using techno - economic analyses to evaluate various technologies , including consideration of system resilience . Expanding our TEA capabilities will provide a rigorous basis for evaluating science, engineering and technology - oriented projects, allowing Sandia programs to quantify the impact of targeted research and development (R&D), and improving Sandia's competitiveness for external funding options . Developing this working group reaffirms the successful use of TEA and related techniques when evaluating the impact of R&D investments, proposed work, and internal approaches to leverage deep technical and robust, business - oriented insights . The main findings of this effort demonstrated the high - impact TEA has on future cost, adoption for applications and impact metric forecasting insights via key past exemplar applied techniques in a broad technology application space . Recommendations from this effort include maintaining and growing the best practices approaches when applying TEA, appreciating the tools (and their limits) from other national laboratories and the academic community, and finally a recognition that more proposals and R&D investment decision s locally at Sandia , and more broadly in the research community from funding agencies , require TEA approaches to justify and support well thought - out project planning.

More Details

Communication with U.S. federal decision makers : a primer with notes on the use of computer models as a means of communication

Webb, Erik K.; Tidwell, Vincent C.

This document outlines ways to more effectively communicate with U.S. Federal decision makers by outlining the structure, authority, and motivations of various Federal groups, how to find the trusted advisors, and how to structure communication. All three branches of Federal governments have decision makers engaged in resolving major policy issues. The Legislative Branch (Congress) negotiates the authority and the resources that can be used by the Executive Branch. The Executive Branch has some latitude in implementation and prioritizing resources. The Judicial Branch resolves disputes. The goal of all decision makers is to choose and implement the option that best fits the needs and wants of the community. However, understanding the risk of technical, political and/or financial infeasibility and possible unintended consequences is extremely difficult. Primarily, decision makers are supported in their deliberations by trusted advisors who engage in the analysis of options as well as the day-to-day tasks associated with multi-party negotiations. In the best case, the trusted advisors use many sources of information to inform the process including the opinion of experts and if possible predictive analysis from which they can evaluate the projected consequences of their decisions. The paper covers the following: (1) Understanding Executive and Legislative decision makers - What can these decision makers do? (2) Finding the target audience - Who are the internal and external trusted advisors? (3) Packaging the message - How do we parse and integrate information, and how do we use computer simulation or models in policy communication?

More Details

A Scalable Systems Approach for Critical Infrastructure Security

Baker, Arnold B.; Woodall, Tommy D.; Hines, W.C.; Hutchinson, Robert L.; Eagan, Robert J.; Moonka, Ajoy K.; Falcone, Patricia K.; Swinson, Mark S.; Harris, Joe M.; Webb, Erik K.; Herrera, Gilbert V.

Critical infrastructures underpin the domestic security, health, safety and economic well being of the United States. They are large, widely dispersed, mostly privately owned systems operated under a mixture of federal, state and local government departments, laws and regulations. While there currently are enormous pressures to secure all aspects of all critical infrastructures immediately, budget realities limit available options. The purpose of this study is to provide a clear framework for systematically analyzing and prioritizing resources to most effectively secure US critical infrastructures from terrorist threats. It is a scalable framework (based on the interplay of consequences, threats and vulnerabilities) that can be applied at the highest national level, the component level of an individual infrastructure, or anywhere in between. This study also provides a set of key findings and a recommended approach for framework application. In addition, this study develops three laptop computer-based tools to assist with framework implementation-a Risk Assessment Credibility Tool, a Notional Risk Prioritization Tool, and a County Prioritization tool. This study's tools and insights are based on Sandia National Laboratories' many years of experience in risk, consequence, threat and vulnerability assessments, both in defense- and critical infrastructure-related areas.

More Details

Threshold Assessment: Definition of Acceptable Sites as Part of Site Selection for the Japanese HLW Program

Mckenna, Sean A.; Webb, Erik K.

For the last ten years, the Japanese High-Level Nuclear Waste (HLW) repository program has focused on assessing the feasibility of a basic repository concept, which resulted in the recently published H12 Report. As Japan enters the implementation phase, a new organization must identify, screen and choose potential repository sites. Thus, a rapid mechanism for determining the likelihood of site suitability is critical. The threshold approach, described here, is a simple mechanism for defining the likelihood that a site is suitable given estimates of several critical parameters. We rely on the results of a companion paper, which described a probabilistic performance assessment simulation of the HLW reference case in the H12 report. The most critical two or three input parameters are plotted against each other and treated as spatial variables. Geostatistics is used to interpret the spatial correlation, which in turn is used to simulate multiple realizations of the parameter value maps. By combining an array of realizations, we can look at the probability that a given site, as represented by estimates of this combination of parameters, would be good host for a repository site.

More Details
30 Results
30 Results