Publications

9 Results
Skip to search filters

Network Randomization and Dynamic Defense for Critical Infrastructure Systems

Chavez, Adrian R.; Martin, Mitchell T.; Hamlet, Jason H.; Stout, William M.S.; Lee, Erik L.

Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.

More Details

National SCADA Test Bed: FY05 Progress on Virtual Control System Environment (VCSE)

Van Leeuwen, Brian P.; Michalski, John T.; Lee, Erik L.

This document provides the status of the Virtual Control System Environment (VCSE) under development at Sandia National Laboratories. This development effort is funded by the Department of Energy's (DOE) National SCADA Test Bed (NSTB) Program. Specifically the document presents a Modeling and Simulation (M&S) and software interface capability that supports the analysis of Process Control Systems (PCS) used in critical infrastructures. This document describes the development activities performed through June 2006 and the current status of the VCSE development task. Initial activities performed by the development team included researching the needs of critical infrastructure systems that depend on PCS. A primary source describing the security needs of a critical infrastructure is the Roadmap to Secure Control Systems in the Energy Sector. A literature search of PCS analysis tools was performed and we identified a void in system-wide PCS M&S capability. No existing tools provide a capability to simulate control system devices and the underlying supporting communication network. The design team identified the requirements for an analysis tool to fill this void. Since PCS are comprised of multiple subsystems, an analysis framework that is modular was selected for the VCSE. The need for a framework to support the interoperability of multiple simulators with a PCS device model library was identified. The framework supports emulation of a system that is represented by models in a simulation interacting with actual hardware via a System-in-the-Loop (SITL) interface. To identify specific features for the VCSE analysis tool the design team created a questionnaire that briefly described the range of potential capabilities the analysis tool could include and requested feedback from potential industry users. This initial industry outreach was also intended to identify several industry users that are willing to participate in a dialog through the development process so that we maximize usefulness of the VCSE to industry. Industry involvement will continue throughout the VCSE development process. The teams activities have focused on creating a modeling and simulation capability that will support the analysis of PCS. An M&S methodology that is modular in structure was selected. The framework is able to support a range of model fidelities depending on the analysis being performed. In some cases high-fidelity network communication protocol and device models are necessary which can be accomplished by including a high-fidelity communication network simulator such as OPNET Modeler. In other cases lower fidelity models could be used in which case the high-fidelity communication network simulator is not needed. In addition, the framework supports a range of control system device behavior models. The models could range from simple function models to very detailed vendor-specific models. Included in the FY05 funding milestones was a demonstration of the framework. The development team created two scenarios that demonstrated the VCSE modular framework. The first demonstration provided a co-simulation using a high-fidelity communication network simulator interoperating with a custom developed control system simulator and device library. The second scenario provided a system-in-the-loop demonstration that emulated a system with a virtual network segment interoperating with a real-device network segment.

More Details

Intrusion detection and monitoring for wireless networks

Vanrandwyk, Jamie V.; Thomas, Eric D.; Custer, Ryan C.; Lee, Erik L.; Kilman, Dominique K.; Franklin, Jason F.

Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

More Details

Network Security Mechanisms Utilizing Dynamic Network Address Translation LDRD Project

Jung, Carrie M.; Lee, Erik L.; Michalski, John T.; Michalski, John T.

A new protocol technology is just starting to emerge from the laboratory environment. Its stated purpose is to provide an additional means in which networks, and the services that reside on them, can be protected from adversarial compromise. This report has a two-fold objective. First is to provide the reader with an overview of this emerging Dynamic Defenses technology using Dynamic Network Address Translation (Dynat). This ''structure overview'' is concentrated in the body of the report, and describes the important attributes of the technology. The second objective is to provide a framework that can be used to help in the classification and assessment of the different types of dynamic defense technologies along with some related capabilities and limitations. This information is primarily contained in the appendices.

More Details
9 Results
9 Results