Modeling ionization quenching in organic scintillators
Materials Advances
Materials Advances
Sensors
Neutron double scatter imaging exploits the kinematics of neutron elastic scattering to enable emission imaging of neutron sources. Due to the relatively low coincidence detection efficiency of fast neutrons in organic scintillator arrays, imaging efficiency for double scatter cameras can also be low. One method to realize significant gains in neutron coincidence detection efficiency is to develop neutron double scatter detectors which employ monolithic blocks of organic scintillator, instrumented with photosensor arrays on multiple faces to enable 3D position and multi-interaction time pickoff. Silicon photomultipliers (SiPMs) have several advantageous characteristics for this approach, including high photon detection efficiency (PDE), good single photon time resolution (SPTR), high gain that translates to single photon counting capabilities, and ability to be tiled into large arrays with high packing fraction and photosensitive area fill factor. However, they also have a tradeoff in high uncorrelated and correlated noise rates (dark counts from thermionic emissions and optical photon crosstalk generated during avalanche) which may complicate event positioning algorithms. We have evaluated the noise characteristics and SPTR of Hamamatsu S13360-6075 SiPMs with low noise, fast electronic readout for integration into a monolithic neutron scatter camera prototype. The sensors and electronic readout were implemented in a small-scale prototype detector in order to estimate expected noise performance for a monolithic neutron scatter camera and perform proof-of-concept measurements for scintillation photon counting and three-dimensional event positioning.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Instrumentation
The Optically Segmented Single Volume Scatter Camera (OS-SVSC) aims to image neutron sources for non-proliferation applications using the kinematic reconstruction of elastic double-scatter events. Our prototype system consists of 64 EJ-204 organic plastic scintillator bars, each measuring 5 mm × 5 mm × 200 mm and individually wrapped in Teflon tape. The scintillator array is optically coupled to two silicon photomultiplier ArrayJ-60035 64P-PCB arrays, each comprised of 64 individual 6 mm × 6 mm J-Series sensors arranged in an 8 × 8 array. We report on the design details, including component selections, mechanical design and assembly, and the electronics system. The described design leveraged existing off-the-shelf solutions to support the rapid development of a phase 1 prototype. Several valuable lessons were learned from component and system testing, including those related to the detector’s mechanical structure and electrical crosstalk that we conclude originates in the commercial photodetector arrays and the associated custom breakout cards. We detail our calibration efforts, beginning with calibrations for the electronics, based on the IRS3D application-specific integrated circuits, and their associated timing resolutions, ranging from 30 ps to 90 ps. With electronics calibrations applied, energy and position calibrations were performed for a set of edge bars using 22Na and 90Sr, respectively, reporting an average resolution of (12.07 ± 0.03) mm for energy depositions between 900 keVee and 1000 keVee. We further demonstrate a position calibration method for the internal bars of the matrix using cosmic-ray muons as an alternative to emission sources that cannot easily access these bars, with an average measured resolution of (14.86 ± 0.29) mm for depositions between 900 keVee and 1000 keVee. The coincident time resolution reported between pairs of bars measured up to 400 ps from muon acquisitions. Energy and position calibration values measured with muons are consistent with those obtained using particle emission sources.
Abstract not provided.
Abstract not provided.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
The detection of special nuclear materials (SNM) requires the understanding of nuclear signatures that allow the discrimination against background. In particular, understanding neutron background characteristics such as count rates and energies and their correlations with environmental conditions and surroundings of measurement locations is important in enhancing SNM detection capabilities. The Mobile Imager of Neutrons for Emergency Responders (MINER) was deployed for 8 weeks in downtown San Francisco (CA) to study such neutron background characteristics in an urban environment. Of specific interest was the investigation of the impact of surrounding buildings on the neutron background count rates and to answer the question whether buildings act as absorber of neutrons or as sources via the so-called ship effect. MINER consists of 16 liquid scintillator detector elements and can be operated as a neutron spectrometer, as a neutron imager, or simply as a counter of fast neutrons. As expected, the neutron background rate was found to be inversely proportional to the atmospheric pressure. In the energy range where MINER is most sensitive, approximately 1–10 MeV, it was found that the shape of the detected background spectrum is similar to that of a detected fission spectrum, indicating the limited discrimination power of the neutron energy. The similarities between the detected background neutron spectrum and fission sources makes it difficult to discriminate SNM from background based solely on the energies observed. The images produced using maximum likelihood expectation maximization revealed that neutrons preferentially are coming from areas in the environment that have open sky, indicating that the surrounding buildings act as absorbers of neutrons rather than sources as expected by the ship effect. The inherent properties of a neutron scatter camera limit the achievable image quality and the effective deployment to systematically map neutron background signatures due to the low count rate.
Abstract not provided.
Abstract not provided.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Herein we report the progress towards an organic glass scintillator with fast and thermal neutron sensitivity providing “triple” pulse shape discrimination (PSD) through the inclusion of a boron-incorporated aromatic molecule. The commercially available molecule 2-(p-tolyl)-1,3,2-dioxaborinane (TDB) can be readily synthesized in one step using inexpensive materials and incorporated into the organic glass scintillator at 20% by weight or 0.25% 10B by mass. In addition, we demonstrate that TDB can be easily scaled up and formulated into organic glass scintillator samples to produce a thermal neutron capture signal with a light yield equivalent to 120.4 ± 3.7 keVee, which is the highest value reported in the literature to date.
Journal of Physics: Conference Series
The Single-Volume Scatter Camera (SVSC) approach to kinematic neutron imaging, in which an incident neutron’s direction is reconstructed via multiple neutron-proton scattering events, potentially offers much greater efficiency and portability than current systems. In our first design of an Optically-Segmented (OS) SVSC, the detector consists of an 8×8 array of 5×5×200 mm3 bars of EJ-204 scintillator wrapped in Teflon tape, optically coupled with SensL J-series 6 x 6 mm Silicon Photomultiplier (SiPM) arrays, all inside an aluminum frame that serves as a dark box. The SiPMs are read out using custom (multi-GSPS) waveform sampling electronics. In this work, construction, characterization, and electronics updates are reported. The position, time, and energy resolutions of individual bars were obtained by measuring different scintillators with different reflectors. This work was carried out in parallel at the University of Hawaii and at Sandia National Laboratories and resulted in the preliminary design of the camera. Monte-Carlo simulations using the Geant4 toolkit were carried out for individual scintillator bars, as well as the array setup. A custom analysis using ROOT libraries in C++ simulated the SiPM response from Geant4 photon hits. This analysis framework is under development and will allow for seamless comparisons between experimental and simulated data.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2020
An optically-segmented single-volume scatter camera is being developed to image MeV-energy neutron sources. The design employs long, thin, optically isolated organic scintillator pillars with 5 mm × 5 mm × 200 mm dimensions (i.e., an aspect-ratio of 1:1:40). Teflon reflector is used to achieve optical isolation and improve light collection. The effect of Teflon on the ability to resolve the radiation interaction locations along such high aspect-ratio pillars is investigated. It was found that reconstruction based on the amplitude of signals collected on both ends of a bare pillar is less precise than reconstruction based on their arrival times. However, this observation is reversed after wrapping in Teflon, such that there is little to no improvement in reconstruction resolution calculated by combining both methods. It may be possible to use another means of optical isolation that does not require wrapping each individual pillar of the camera.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
The multi-institution Single-Volume Scatter Camera (SVSC) collaboration led by Sandia National Laboratories (SNL) is developing a compact, high-efficiency double-scatter neutron imaging system. Kinematic emission imaging of fission-energy neutrons can be used to detect, locate, and spatially characterize special nuclear material. Neutron-scatter cameras, analogous to Compton imagers for gamma ray detection, have a wide field of view, good event-by-event angular resolution, and spectral sensitivity. Existing systems, however, suffer from large size and/or poor efficiency. We are developing high-efficiency scatter cameras with small form factors by detecting both neutron scatters in a compact active volume. This effort requires development and characterization of individual system components, namely fast organic scintillators, photodetectors, electronics, and reconstruction algorithms. In this presentation, we will focus on characterization measurements of several SVSC candidate scintillators. The SVSC collaboration is investigating two system concepts: the monolithic design in which isotropically emitted photons are detected on the sides of the volume, and the optically segmented design in which scintillation light is channeled along scintillator bars to segmented photodetector readout. For each of these approaches, we will describe the construction and performance of prototype systems. We will conclude by summarizing lessons learned, comparing and contrasting the two system designs, and outlining plans for the next iteration of prototype design and construction.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
We report on the position, timing, and energy resolution of a range of plastic scintillator bars and reflector treatments using dual-ended silicon photomultiplier readout. These measurements are motivated by the upcoming construction of an optically segmented single-volume neutron scatter camera, in which neutron elastic scattering off of hydrogen is used to kinematically reconstruct the location and energy of a neutron-emitting source. For this application, interaction position resolutions of about 10 mm and timing resolutions of about 1 ns are necessary to achieve the desired efficiency for fission-energy neutrons. The results presented here indicate that this is achievable with an array of 5×5×190mm 3 bars of EJ-204 scintillator wrapped in Teflon tape, read out with SensL's J-series 6×6mm 2 silicon photomultipliers. With two independent setups, we also explore the systematic variability of the position resolution, and show that, in general, using the difference in the pulse arrival time at the two ends is less susceptible to systematic variation than using the log ratio of the charge amplitude of the two ends. Finally, we measure a bias in the absolute time of interactions as a function of position along the bar: the measured interaction time for events at the center of the bar is ∼100 ps later than interactions near the SiPM.
Review of Scientific Instruments
The Neutron Scatter Camera (NSC) is a neutron spectrometer and imager that has been developed and improved by the Sandia National Laboratories for several years. Built for special nuclear material searches, the instrument was configured by the design to reconstruct neutron sources within the fission energy range 1-10 MeV. In this work, we present modifications that attempt to extend the NSC sensitivity to neutron energies in the range ∼10-200 MeV and discuss the corresponding consequences for the event processing. We present simulation results that manifest important aspects of the NSC response to those intermediate energy neutrons. The simulation results also evidence that the instrument's spectroscopic capabilities severely deteriorate at those energies, mainly due to the uncertainties in measuring energy, time, and distance between the two neutron scattering interactions. This work is motivated by the need to characterize neutron fluxes at particle accelerators as they may represent important backgrounds for neutrino experiments.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Instrumentation
The development of fast, highly pixelated photodetectors with single-photon sensitivity has the potential to enable a variety of new radiation detection concepts. Systems that desire to employ these detectors without loss of information demand waveform digitization with high sampling rates. Switched capacitor arrays provide a low-cost, low-power, compact solution to fast readout with high channel density. The Sandia Laboratories Compact Electronics for Modular Acquisition (SCEMA) was developed to meet these demands. A single module employs two domino ring sampling switched capacitor arrays (DRS4) [1] to provide 16 channels of up to 5 GS/s waveform digitization. This paper presents an overview of the board design and function. Calibration procedures for the module are discussed. Finally, temporal resolution tests are presented demonstrating the module's viability as readout for high fidelity temporal measurements of single photons in suitable photodetectors.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
The scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: Anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene (DPAC). These measurements include the characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for the investigation of the singlet and triplet molecular excitation behaviors independently. This paper provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. These measurements show that the relationship between the prompt and delayed light anisotropies is correlated with a crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and DPAC). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. These processes and the impact of their directional dependences on the scintillation anisotropy are discussed.