Publications

174 Results
Skip to search filters

Modeling ionization quenching in organic scintillators

Materials Advances

Laplace, Thibault L.; Goldblum, Bethany L.; Brown, Joshua B.; LeBlanc, Glenn L.; Li, Tianyue L.; Manfredi, Juan M.; Brubaker, Erik B.

Ionization quenching models were assessed by evaluating light yield data from multiple organic scintillators and recoil ions over a fission spectrum neutron energy range, important for basic science and applications.

More Details

Front-End Design for SiPM-Based Monolithic Neutron Double Scatter Imagers

Sensors

Cates, J.W.; Steele, John T.; Balajthy, Jon A.; Negut, V.N.; Hausladen, P.A.; Ziock, K.Z.; Brubaker, Erik B.

Neutron double scatter imaging exploits the kinematics of neutron elastic scattering to enable emission imaging of neutron sources. Due to the relatively low coincidence detection efficiency of fast neutrons in organic scintillator arrays, imaging efficiency for double scatter cameras can also be low. One method to realize significant gains in neutron coincidence detection efficiency is to develop neutron double scatter detectors which employ monolithic blocks of organic scintillator, instrumented with photosensor arrays on multiple faces to enable 3D position and multi-interaction time pickoff. Silicon photomultipliers (SiPMs) have several advantageous characteristics for this approach, including high photon detection efficiency (PDE), good single photon time resolution (SPTR), high gain that translates to single photon counting capabilities, and ability to be tiled into large arrays with high packing fraction and photosensitive area fill factor. However, they also have a tradeoff in high uncorrelated and correlated noise rates (dark counts from thermionic emissions and optical photon crosstalk generated during avalanche) which may complicate event positioning algorithms. We have evaluated the noise characteristics and SPTR of Hamamatsu S13360-6075 SiPMs with low noise, fast electronic readout for integration into a monolithic neutron scatter camera prototype. The sensors and electronic readout were implemented in a small-scale prototype detector in order to estimate expected noise performance for a monolithic neutron scatter camera and perform proof-of-concept measurements for scintillation photon counting and three-dimensional event positioning.

More Details

Design and calibration of an optically segmented single volume scatter camera for neutron imaging

Journal of Instrumentation

Galindo-Tellez, A.; Keefe, K.; Adamek, E.; Brubaker, Erik B.; Crow, B.; Dorrill, R.; Druetzler, A.; Felix, C.J.; Kaneshige, N.; Learned, J.G.; Manfredi, J.J.; Nishimura, K.; Souza, B.P.; Schoen, D.; Sweany, Melinda

The Optically Segmented Single Volume Scatter Camera (OS-SVSC) aims to image neutron sources for non-proliferation applications using the kinematic reconstruction of elastic double-scatter events. Our prototype system consists of 64 EJ-204 organic plastic scintillator bars, each measuring 5 mm × 5 mm × 200 mm and individually wrapped in Teflon tape. The scintillator array is optically coupled to two silicon photomultiplier ArrayJ-60035 64P-PCB arrays, each comprised of 64 individual 6 mm × 6 mm J-Series sensors arranged in an 8 × 8 array. We report on the design details, including component selections, mechanical design and assembly, and the electronics system. The described design leveraged existing off-the-shelf solutions to support the rapid development of a phase 1 prototype. Several valuable lessons were learned from component and system testing, including those related to the detector’s mechanical structure and electrical crosstalk that we conclude originates in the commercial photodetector arrays and the associated custom breakout cards. We detail our calibration efforts, beginning with calibrations for the electronics, based on the IRS3D application-specific integrated circuits, and their associated timing resolutions, ranging from 30 ps to 90 ps. With electronics calibrations applied, energy and position calibrations were performed for a set of edge bars using 22Na and 90Sr, respectively, reporting an average resolution of (12.07 ± 0.03) mm for energy depositions between 900 keVee and 1000 keVee. We further demonstrate a position calibration method for the internal bars of the matrix using cosmic-ray muons as an alternative to emission sources that cannot easily access these bars, with an average measured resolution of (14.86 ± 0.29) mm for depositions between 900 keVee and 1000 keVee. The coincident time resolution reported between pairs of bars measured up to 400 ps from muon acquisitions. Energy and position calibration values measured with muons are consistent with those obtained using particle emission sources.

More Details

Deployment of a double scatter system for directional detection of background neutron radiation

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Glick, Adam; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Gerling, Mark D.; Quiter, Brian J.; Vetter, Kai

The detection of special nuclear materials (SNM) requires the understanding of nuclear signatures that allow the discrimination against background. In particular, understanding neutron background characteristics such as count rates and energies and their correlations with environmental conditions and surroundings of measurement locations is important in enhancing SNM detection capabilities. The Mobile Imager of Neutrons for Emergency Responders (MINER) was deployed for 8 weeks in downtown San Francisco (CA) to study such neutron background characteristics in an urban environment. Of specific interest was the investigation of the impact of surrounding buildings on the neutron background count rates and to answer the question whether buildings act as absorber of neutrons or as sources via the so-called ship effect. MINER consists of 16 liquid scintillator detector elements and can be operated as a neutron spectrometer, as a neutron imager, or simply as a counter of fast neutrons. As expected, the neutron background rate was found to be inversely proportional to the atmospheric pressure. In the energy range where MINER is most sensitive, approximately 1–10 MeV, it was found that the shape of the detected background spectrum is similar to that of a detected fission spectrum, indicating the limited discrimination power of the neutron energy. The similarities between the detected background neutron spectrum and fission sources makes it difficult to discriminate SNM from background based solely on the energies observed. The images produced using maximum likelihood expectation maximization revealed that neutrons preferentially are coming from areas in the environment that have open sky, indicating that the surrounding buildings act as absorbers of neutrons rather than sources as expected by the ship effect. The inherent properties of a neutron scatter camera limit the achievable image quality and the effective deployment to systematically map neutron background signatures due to the low count rate.

More Details

Single Volume Scatter Camera: Optically Segmented Effort

Sweany, Melinda; Adamek, E A.; Alhajaji, H A.; Brown, James R.; Balathy, John B.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Cates, J C.; Dorril, R D.; Druetzler, A D.; Elam, J E.; Febbraro, M F.; Feng, Patrick L.; Folsom, Michael W.; Gabella, G G.; Galindo-Tellez, A G.; Goldblum, B G.; Hausladen, P H.; Kaneshige, N.K.; Keffe, Kevin K.; Laplace, T, A.; Maggi, Paul E.; Mane, A M.; Manfredi, J M.; Marleau, Peter M.; Mattingly, J.M.; Mishra, M M.; Moustafa, A M.; Nattress, J N.; Nishimura, K N.; Pinto-Souza, B P.; Steele, John T.; Takahashi, E T.; Ziock, K Z.

Abstract not provided.

Single Volume Scatter Camera: Optically Segmented Effort - Single Slide Overview

Sweany, Melinda; Adamek, E A.; Alhajaji, H A.; Brown, James R.; Balathy, John B.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Cates, J C.; Dorril, R D.; Druetzler, A D.; Elam, J E.; Febbraro, M F.; Feng, Patrick L.; Folsom, Michael W.; Gabella, G G.; Galindo-Tellez, A G.; Goldblum, B G.; Hausladen, P H.; Kaneshige, N.K.; Keffe, Kevin K.; Laplace, T, A.; Maggi, Paul E.; Mane, A M.; Manfredi, J M.; Marleau, Peter M.; Mattingly, J.M.; Mishra, M M.; Moustafa, A M.; Nattress, J N.; Nishimura, K N.; Pinto-Souza, B P.; Steele, John T.; Takahashi, E T.; Ziock, K Z.

Abstract not provided.

Boron-loaded organic glass scintillators

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Nguyen, Lucas N.; Gabella, Gino; Goldblum, Bethany L.; Laplace, Thibault A.; Carlson, Joseph S.; Brubaker, Erik B.; Feng, Patrick L.

Herein we report the progress towards an organic glass scintillator with fast and thermal neutron sensitivity providing “triple” pulse shape discrimination (PSD) through the inclusion of a boron-incorporated aromatic molecule. The commercially available molecule 2-(p-tolyl)-1,3,2-dioxaborinane (TDB) can be readily synthesized in one step using inexpensive materials and incorporated into the organic glass scintillator at 20% by weight or 0.25% 10B by mass. In addition, we demonstrate that TDB can be easily scaled up and formulated into organic glass scintillator samples to produce a thermal neutron capture signal with a light yield equivalent to 120.4 ± 3.7 keVee, which is the highest value reported in the literature to date.

More Details

Current status of an optically-segmented single-volume scatter camera for neutron imaging

Journal of Physics: Conference Series

Tellez-Galindo, A.; Brown, J.A.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Carlson, Joseph S.; Dorrill, R.; Druetzler, A.; Elam, J.; Febbraro, M.; Feng, P.; Folsom, M.; Galino-Tellez, A.; Goldblum, B.L.; Hausladen, P.; Kaneshige, N.; Keefe, K.; Laplace, T.A.; Learned, J.G.; Mane, A.; Manfredi, J.J.; Marleau, Peter M.; Mattingly, J.; Mishra, M.; Moustafa, A.; Nattress, J.; Nishimura, K.; Steele, J.; Sweany, Melinda; Weinfurther, K.; Ziock, K.

The Single-Volume Scatter Camera (SVSC) approach to kinematic neutron imaging, in which an incident neutron’s direction is reconstructed via multiple neutron-proton scattering events, potentially offers much greater efficiency and portability than current systems. In our first design of an Optically-Segmented (OS) SVSC, the detector consists of an 8×8 array of 5×5×200 mm3 bars of EJ-204 scintillator wrapped in Teflon tape, optically coupled with SensL J-series 6 x 6 mm Silicon Photomultiplier (SiPM) arrays, all inside an aluminum frame that serves as a dark box. The SiPMs are read out using custom (multi-GSPS) waveform sampling electronics. In this work, construction, characterization, and electronics updates are reported. The position, time, and energy resolutions of individual bars were obtained by measuring different scintillators with different reflectors. This work was carried out in parallel at the University of Hawaii and at Sandia National Laboratories and resulted in the preliminary design of the camera. Monte-Carlo simulations using the Geant4 toolkit were carried out for individual scintillator bars, as well as the array setup. A custom analysis using ROOT libraries in C++ simulated the SiPM response from Geant4 photon hits. This analysis framework is under development and will allow for seamless comparisons between experimental and simulated data.

More Details

The Single-Volume Scatter Camera

Manfredi, Juan M.; Adamek, Evan A.; Brown, Joshua B.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Cates, Joshua C.; Dorrill, Ryan D.; Druetzler, Andrew D.; Elam, Jeff W.; Feng, Patrick L.; Folsom, Micah F.; Galindo-Tellez, Aline G.; Goldblum, Bethany L.; Hausladen, Paul H.; Kaneshige, Nathan K.; Keefe, Kevin P.; Laplace, Thibault L.; Learned, John L.; Mane, Anil M.; Marleau, Peter M.; Mattingly, John M.; Mishra, Mudit M.; Moustafa, Ahmed M.; Nattress, Jason N.; Steele, John T.; Sweany, Melinda; Weinfurther, Kyle J.; Ziock, Klaus-Peter Z.

Abstract not provided.

Effect of Teflon Wrapping on the Interaction Position Reconstruction Resolution in Long, Thin Plastic Scintillator Pillars

2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2020

Moustafa, Ahmed; Galindo-Tellez, Aline; Sweany, Melinda; Brubaker, Erik B.; Mattingly, John

An optically-segmented single-volume scatter camera is being developed to image MeV-energy neutron sources. The design employs long, thin, optically isolated organic scintillator pillars with 5 mm × 5 mm × 200 mm dimensions (i.e., an aspect-ratio of 1:1:40). Teflon reflector is used to achieve optical isolation and improve light collection. The effect of Teflon on the ability to resolve the radiation interaction locations along such high aspect-ratio pillars is investigated. It was found that reconstruction based on the amplitude of signals collected on both ends of a bare pillar is less precise than reconstruction based on their arrival times. However, this observation is reversed after wrapping in Teflon, such that there is little to no improvement in reconstruction resolution calculated by combining both methods. It may be possible to use another means of optical isolation that does not require wrapping each individual pillar of the camera.

More Details

The single-volume scatter camera

Proceedings of SPIE - The International Society for Optical Engineering

Manfredi, Juan J.; Adamek, Evan; Brown, Joshua A.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Cates, Joshua; Dorrill, Ryan; Druetzler, Andrew; Elam, Jeff; Feng, Patrick L.; Folsom, Micah; Galindo-Tellez, Aline; Goldblum, Bethany L.; Hausladen, Paul; Kaneshige, Nathan; Keefe, Kevin P.; Laplace, Thibault A.; Learned, John G.; Mane, Anil; Marleau, Peter M.; Mattingly, John; Mishra, Mudit; Moustafa, Ahmed; Nattress, Jason; Nishimura, Kurtis; Steele, John T.; Sweany, Melinda; Weinfurther, Kyle J.; Ziock, Klaus P.

The multi-institution Single-Volume Scatter Camera (SVSC) collaboration led by Sandia National Laboratories (SNL) is developing a compact, high-efficiency double-scatter neutron imaging system. Kinematic emission imaging of fission-energy neutrons can be used to detect, locate, and spatially characterize special nuclear material. Neutron-scatter cameras, analogous to Compton imagers for gamma ray detection, have a wide field of view, good event-by-event angular resolution, and spectral sensitivity. Existing systems, however, suffer from large size and/or poor efficiency. We are developing high-efficiency scatter cameras with small form factors by detecting both neutron scatters in a compact active volume. This effort requires development and characterization of individual system components, namely fast organic scintillators, photodetectors, electronics, and reconstruction algorithms. In this presentation, we will focus on characterization measurements of several SVSC candidate scintillators. The SVSC collaboration is investigating two system concepts: the monolithic design in which isotropically emitted photons are detected on the sides of the volume, and the optically segmented design in which scintillation light is channeled along scintillator bars to segmented photodetector readout. For each of these approaches, we will describe the construction and performance of prototype systems. We will conclude by summarizing lessons learned, comparing and contrasting the two system designs, and outlining plans for the next iteration of prototype design and construction.

More Details

Current Status of an Optically-Segmented Single-Volume Scatter Camera for Neutron Imaging

Brown, J.AB.; Brubaker, Erik B.; Dorril, R D.; Druetzler, A D.; Elam, J E.; Febbraro, M F.; Feng, Patrick L.; Folsom, Michael W.; Galino-Tellez, A G.; Goldblum, B.LG.; Hausladen, P H.; Kaneshige, N K.; Keffe, K K.; Laplace, T, A.; Learned, J.G.L.; Mane, A M.; Manfredi, J M.; Marleau, Peter M.; Mattingly, J M.; Mishra, Mishra; Almanza-Madrid, Rene A.; Moustafa, A M.; Nattress, J N.; Steele, John T.; Sweany, Melinda; Weinfurther, K W.; Ziock, K.Z.

Abstract not provided.

Interaction position, time, and energy resolution in organic scintillator bars with dual-ended readout

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Sweany, Melinda; Galindo-Tellez, A.; Brown, J.; Brubaker, Erik B.; Dorrill, R.; Druetzler, A.; Kaneshige, N.; Learned, J.; Nishimura, K.; Bae, W.

We report on the position, timing, and energy resolution of a range of plastic scintillator bars and reflector treatments using dual-ended silicon photomultiplier readout. These measurements are motivated by the upcoming construction of an optically segmented single-volume neutron scatter camera, in which neutron elastic scattering off of hydrogen is used to kinematically reconstruct the location and energy of a neutron-emitting source. For this application, interaction position resolutions of about 10 mm and timing resolutions of about 1 ns are necessary to achieve the desired efficiency for fission-energy neutrons. The results presented here indicate that this is achievable with an array of 5×5×190mm 3 bars of EJ-204 scintillator wrapped in Teflon tape, read out with SensL's J-series 6×6mm 2 silicon photomultipliers. With two independent setups, we also explore the systematic variability of the position resolution, and show that, in general, using the difference in the pulse arrival time at the two ends is less susceptible to systematic variation than using the log ratio of the charge amplitude of the two ends. Finally, we measure a bias in the absolute time of interactions as a function of position along the bar: the measured interaction time for events at the center of the bar is ∼100 ps later than interactions near the SiPM.

More Details

Extension of the neutron scatter camera sensitivity to the ∼ 10-200 MeV neutron energy range

Review of Scientific Instruments

Cabrera-Palmer, Belkis C.; Brubaker, Erik B.; Gerling, Mark D.; Reyna, David R.

The Neutron Scatter Camera (NSC) is a neutron spectrometer and imager that has been developed and improved by the Sandia National Laboratories for several years. Built for special nuclear material searches, the instrument was configured by the design to reconstruct neutron sources within the fission energy range 1-10 MeV. In this work, we present modifications that attempt to extend the NSC sensitivity to neutron energies in the range ∼10-200 MeV and discuss the corresponding consequences for the event processing. We present simulation results that manifest important aspects of the NSC response to those intermediate energy neutrons. The simulation results also evidence that the instrument's spectroscopic capabilities severely deteriorate at those energies, mainly due to the uncertainties in measuring energy, time, and distance between the two neutron scattering interactions. This work is motivated by the need to characterize neutron fluxes at particle accelerators as they may represent important backgrounds for neutrino experiments.

More Details

SCEMA: A high channel density electronics module for fast waveform capture

Journal of Instrumentation

Steele, J.; Brown, J.A.; Brubaker, Erik B.; Nishimura, K.

The development of fast, highly pixelated photodetectors with single-photon sensitivity has the potential to enable a variety of new radiation detection concepts. Systems that desire to employ these detectors without loss of information demand waveform digitization with high sampling rates. Switched capacitor arrays provide a low-cost, low-power, compact solution to fast readout with high channel density. The Sandia Laboratories Compact Electronics for Modular Acquisition (SCEMA) was developed to meet these demands. A single module employs two domino ring sampling switched capacitor arrays (DRS4) [1] to provide 16 channels of up to 5 GS/s waveform digitization. This paper presents an overview of the board design and function. Calibration procedures for the module are discussed. Finally, temporal resolution tests are presented demonstrating the module's viability as readout for high fidelity temporal measurements of single photons in suitable photodetectors.

More Details

Progress toward a compact high-efficiency neutron scatter camera

Brown, Joshua A.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Druetzler, Andy D.; Elam, Jeff W.; Febbraro, Michael F.; Feng, Patrick L.; Folsom, Micah F.; Goldblum, Bethany L.; Hausladen, Paul H.; Kaneshige, Nate K.; Laplace, Thibault L.; Learned, John L.; Mane, Anil M.; Marleau, Peter M.; Mattingly, John M.; Mishra, Mudit M.; Nishimura, Kurtis N.; Steele, John T.; Sweany, Melinda; Ziock, Klaus Z.

Abstract not provided.

On the relationship between scintillation anisotropy and crystal structure in pure crystalline organic scintillator material

IEEE Transactions on Nuclear Science

Schuster, Patricia; Feng, Patrick L.; Brubaker, Erik B.

The scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: Anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene (DPAC). These measurements include the characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for the investigation of the singlet and triplet molecular excitation behaviors independently. This paper provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. These measurements show that the relationship between the prompt and delayed light anisotropies is correlated with a crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and DPAC). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. These processes and the impact of their directional dependences on the scintillation anisotropy are discussed.

More Details

Model-based design evaluation of a compact, high-efficiency neutron scatter camera

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Weinfurther, Kyle; Mattingly, John; Brubaker, Erik B.; Steele, John T.

This paper presents the model-based design and evaluation of an instrument that estimates incident neutron direction using the kinematics of neutron scattering by hydrogen-1 nuclei in an organic scintillator. The instrument design uses a single, nearly contiguous volume of organic scintillator that is internally subdivided only as necessary to create optically isolated pillars, i.e., long, narrow parallelepipeds of organic scintillator. Scintillation light emitted in a given pillar is confined to that pillar by a combination of total internal reflection and a specular reflector applied to the four sides of the pillar transverse to its long axis. The scintillation light is collected at each end of the pillar using a photodetector, e.g., a microchannel plate photomultiplier (MCP-PM) or a silicon photomultiplier (SiPM). In this optically segmented design, the (x,y) position of scintillation light emission (where the x and y coordinates are transverse to the long axis of the pillars) is estimated as the pillar's (x,y) position in the scintillator “block”, and the z-position (the position along the pillar's long axis) is estimated from the amplitude and relative timing of the signals produced by the photodetectors at each end of the pillar. The neutron's incident direction and energy is estimated from the (x,y,z)-positions of two sequential neutron–proton scattering interactions in the scintillator block using elastic scatter kinematics. For proton recoils greater than 1 MeV, we show that the (x,y,z)-position of neutron–proton scattering can be estimated with < 1 cm root-mean-squared [RMS] error and the proton recoil energy can be estimated with < 50 keV RMS error by fitting the photodetectors’ response time history to models of optical photon transport within the scintillator pillars. Finally, we evaluate several alternative designs of this proposed single-volume scatter camera made of pillars of plastic scintillator (SVSC-PiPS), studying the effect of pillar dimensions, scintillator material (EJ-204, EJ-232Q and stilbene), and photodetector (MCP-PM vs. SiPM) response vs. time. We demonstrate that the most precise estimates of incident neutron direction and energy can be obtained using a combination of scintillator material with high luminosity and a photodetector with a narrow impulse response. Specifically, we conclude that an SVSC-PiPS constructed using EJ-204 (a high luminosity plastic scintillator) and an MCP-PM will produce the most precise estimates of incident neutron direction and energy.

More Details

Source detection at 100 meter standoff with a time-encoded imaging system

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Brennan, James S.; Brubaker, Erik B.; Gerling, Mark D.; Marleau, Peter M.; Monterial, Mateusz M.; Nowack, A.; Schuster, P.; Sturm, B.; Sweany, Melinda

We present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ∼1mCi252Cf radiological source at 100m standoff with 90% detection efficiency and 10% false positives against background in 12min. This same detection efficiency is met at 15s for a 40m standoff, and 1.2s for a 20m standoff.

More Details

Null-hypothesis testing using distance metrics for verification of arms-control treaties

2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop, NSS/MIC/RTSD 2016

Khalil, Mohammad K.; Brubaker, Erik B.; Hilton, Nathan R.; Kupinski, Matthew A.; MacGahan, Christopher J.; Marleau, Peter M.

We investigate the feasibility of constructing a data-driven distance metric for use in null-hypothesis testing in the context of arms-control treaty verification. The distance metric is used in testing the hypothesis that the available data are representative of a certain object or otherwise, as opposed to binary-classification tasks studied previously. The metric, being of strictly quadratic form, is essentially computed using projections of the data onto a set of optimal vectors. These projections can be accumulated in list mode. The relatively low number of projections hampers the possible reconstruction of the object and subsequently the access to sensitive information. The projection vectors that channelize the data are optimal in capturing the Mahalanobis squared distance of the data associated with a given object under varying nuisance parameters. The vectors are also chosen such that the resulting metric is insensitive to the difference between the trusted object and another object that is deemed to contain sensitive information. Data used in this study were generated using the GEANT4 toolkit to model gamma transport using a Monte Carlo method. For numerical illustration, the methodology is applied to synthetic data obtained using custom models for plutonium inspection objects. The resulting metric based on a relatively low number of channels shows moderate agreement with the Mahalanobis distance metric for the trusted object but enabling a capability to obscure sensitive information.

More Details

Characterization of the scintillation anisotropy in crystalline stilbene scintillator detectors

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Schuster, P.; Brubaker, Erik B.

This paper reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline melt-grown and solution-grown trans-stilbene to incident DT and DD neutrons. These measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature for melt-grown stilbene and providing the first measurements for solution-grown stilbene. In similar measurements of liquid and plastic detectors, no directional dependence was observed, confirming the hypothesis that the anisotropy in stilbene and other organic crystal scintillators is a result of internal effects due to the molecular or crystal structure and not an external effect on the measurement system.

More Details

Fast neutron background characterization with the Radiological Multi-sensor Analysis Platform (RadMAP)

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Davis, John R.; Brubaker, Erik B.; Vetter, Kai

In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. The expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate. Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. Three areas analyzed in San Francisco, Downtown Oakland, and Berkeley all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.

More Details

Linear models to perform treaty verification tasks for enhanced information security

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik B.; Hilton, Nathan R.; Marleau, Peter M.

Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensional vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.

More Details

Low light event reconstruction simulations for an optically segmented single volume scatter camera

2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015

Weinfurther, Kyle; Mattingly, John; Brubaker, Erik B.; Steele, John T.; Sweany, Melinda; Braverman, Joshua

Dual plane neutron scatter cameras have shown promise for localizing fast neutron sources. The condition that a neutron must scatter in both planes of the camera produces low counting efficiencies. Counting efficiency can be improved using an alternative design that uses a single, optically segmented volume of scintillation material. Using Geant4, we simulated pulses from neutron elastic scatter events at different locations throughout an EJ-204 scintillator bar. We used nonlinear regression on low light pulses to determine the position along the bar where the scatter event occurred.

More Details

Investigating the Anisotropic Scintillation Response in Anthracene through Neutron, Gamma-Ray, and Muon Measurements

IEEE Transactions on Nuclear Science

Schuster, Patricia; Brubaker, Erik B.

This paper reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline anthracene to incident DT neutrons, DD neutrons, 137Cs gamma rays, and, for the first time, cosmic ray muons. The neutron measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature. In similar measurements using incident gamma rays, no directional effect is evident, and any anisotropy with respect to the electron recoil direction is constrained to have a magnitude of less than a tenth of that present in the proton recoil events. Cosmic muons are measured at two directions, and no anisotropy is observed. This set of observations indicates that high dE/dx is necessary for an anisotropy to be present for a given type of scintillation event, which in turn could be used to discriminate among different hypotheses for the underlying causes of the anisotropy, which are not well understood.

More Details

Development of an ideal Observer that incorporates nuisance parameters and processes list-mode data

Journal of the Optical Society of America A: Optics and Image Science, and Vision

MacGahan, Christopher J.; Kupinski, Matthew A.; Hilton, Nathan R.; Brubaker, Erik B.; Johnson, William C.

Observer models were developed to process data in list-mode format in order to perform binary discrimination tasks for use in an arms-control-treaty context. Data used in this study was generated using GEANT4 Monte Carlo simulations for photons using custom models of plutonium inspection objects and a radiation imaging system. Observer model performance was evaluated and presented using the area under the receiver operating characteristic curve. The ideal observer was studied under both signal-known-exactly conditions and in the presence of unknowns such as object orientation and absolute count-rate variability; when these additional sources of randomness were present, their incorporation into the observer yielded superior performance.

More Details

Demonstration of two-dimensional time-encoded imaging of fast neutrons

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Brennan, James S.; Brubaker, Erik B.; Gerling, Mark D.; Marleau, Peter M.; McMillan, K.; Nowack, A.; Galloudec, N.R.; Sweany, Melinda

We present a neutron detector system based on time-encoded imaging, and demonstrate its applicability toward the spatial mapping of special nuclear material. We demonstrate that two-dimensional fast-neutron imaging with 2° resolution at 2 m stand-off is feasible with only two instrumented detectors.

More Details

Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

Brubaker, Erik B.

The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

More Details

Report on a Zero-Knowledge Protocal Tabletop Exercise

Marleau, Peter M.; Brubaker, Erik B.; Deland, Sharon M.; Hilton, Nathan R.; McDaniel, Michael M.; Schroeppel, Richard C.; Seager, Kevin D.; Stoddard, Mary C.; MacArthur, Duncan M.

This report summarizes the discussion and conclusions reached during a table top exercise held at Sandia National Laboratories, Albuquerque on September 3, 2014 regarding a recently described approach for nuclear warhead verification based on the cryptographic concept of a zero-knowledge protocol (ZKP) presented in a recent paper authored by Glaser, Barak, and Goldston. A panel of Sandia National Laboratories researchers, whose expertise includes radiation instrumentation design and development, cryptography, and arms control verification implementation, jointly reviewed the paper and identified specific challenges to implementing the approach as well as some opportunities. It was noted that ZKP as used in cryptography is a useful model for the arms control verification problem, but the direct analogy to arms control breaks down quickly. The ZKP methodology for warhead verification fits within the general class of template-based verification techniques, where a reference measurement is used to confirm that a given object is like another object that has already been accepted as a warhead by some other means. This can be a powerful verification approach, but requires independent means to trust the authenticity of the reference warhead - a standard that may be difficult to achieve, which the ZKP authors do not directly address. Despite some technical challenges, the concept of last-minute selection of the pre-loads and equipment could be a valuable component of a verification regime.

More Details

Random mask optimization for fast neutron coded aperture imaging

Sandia journal manuscript; Not yet accepted for publication

Marleau, Peter M.; Brubaker, Erik B.; McMillan, Kyle M.

In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed image quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.

More Details

Optimal Imaging for Treaty Verification

Brubaker, Erik B.; Hilton, Nathan R.

This report provides a short overview of the DNN R&D funded project SL12-Optlmg-PD2Nc, Optimal Imaging for Treaty Verification. The project began in FY12 and in FY15 is merging with a PNNL project to form the PL14-V-InfoBarrierimg-PD2Nc venture. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. The most recent comprehensive technical report is referenced.

More Details

Time-Encoded Imagers

Marleau, Peter M.; Brubaker, Erik B.

This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.

More Details

Optimal imaging for treaty verification FY2014 annual report

Hilton, Nathan R.; Kupinski, Matthew A.; MacGahan, Christopher J.; Johnson, William C.; Brubaker, Erik B.

FY2014 technical report of our project funded by DNN R&D that leverages advanced inference methods developed for medical and adaptive imaging to address arms control applications. We seek a method to acquire and analyze imaging data of declared treaty-accountable items without creating an image of those objects or otherwise storing or revealing any classified information. Such a method would avoid the use of classified-information barriers. We present our progress on FY2014 tasks defined in our life-cycle plan. We also describe some future work that is part of the continuation of this project in FY2015 and beyond as part of a venture that joins ours with a related PNNL project.

More Details

A High-Sensitivity Fast Neutron Imager

Goldsmith, John E.; Brennan, James S.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Gerling, Mark D.; Marleau, Peter M.; Mascarenhas, Nick M.; Reyna, David R.

A wide range of NSC (Neutron Scatter Camera) activities were conducted under this lifecycle plan. This document outlines the highlights of those activities, broadly characterized as system improvements, laboratory measurements, and deployments, and presents sample results in these areas. Additional information can be found in the documents that reside in WebPMIS.

More Details

Time-Encoded Imagers

Marleau, Peter M.; Brubaker, Erik B.; Brennan, James S.

We have developed two neutron detector systems based on time-encoded imaging and demonstrated their applicability toward non-proliferation missions. The 1D-TEI system was designed for and evaluated against the ability to detect Special Nuclear Material (SNM) in very low signal to noise environments; in particular, very large stand-off and/or weak sources that may be shielded. We have demonstrated significant detection (>5 sigma) of a 2.8e5 n/s neutron fission source at 100 meters stand-off in 30 min. If scaled to an IAEA significant quantity of Pu, we estimate that this could be reduced to as few as ~5 minutes. In contrast to simple counting detectors, this was accomplished without the need of previous background measurements. The 2D-TEI system was designed for high resolution spatial mapping of distributions of SNM and proved feasibility of twodimensional fast neutron imaging using the time encoded modulation of rates on a single pixel detector. Because of the simplicity of the TEI design, there is much lower systematic uncertainty in the detector response typical coded apertures. Other imaging methods require either multiple interactions (e.g. neutron scatter camera or Compton imagers), leading to intrinsically low efficiencies, or spatial modulation of the signal (e.g., Neutron Coded Aperture Imager (Hausladen, 2012)), which requires a complicated, high channel count, and expensive position sensitive detector. In contrast, a single detector using a time-modulated collimator can encode directional information in the time distribution of detected events. This is the first investigation of time-encoded imaging for nuclear nonproliferation applications.

More Details

Results from laboratory tests of the two-dimensional Time-Encoded Imaging System

Marleau, Peter M.; Brennan, James S.; Brubaker, Erik B.; Gerling, Mark D.; Le Galloudec, Nathalie J.

A series of laboratory experiments were undertaken to demonstrate the feasibility of two dimensional time-encoded imaging. A prototype two-dimensional time encoded imaging system was designed and constructed. Results from imaging measurements of single and multiple point sources as well as extended source distributions are presented. Time encoded imaging has proven to be a simple method for achieving high resolution two-dimensional imaging with potential to be used in future arms control and treaty verification applications.

More Details

Results from field tests of the one-dimensional Time-Encoded Imaging System

Marleau, Peter M.; Brennan, James S.; Brubaker, Erik B.

A series of field experiments were undertaken to evaluate the performance of the one dimensional time encoded imaging system. The significant detection of a Cf252 fission radiation source was demonstrated at a stand-off of 100 meters. Extrapolations to different quantities of plutonium equivalent at different distances are made. Hardware modifications to the system for follow on work are suggested.

More Details

Optimal Imaging for Treaty Verification

Brubaker, Erik B.; Hilton, Nathan H.; Johnson, William A.; Marleau, Peter M.; Kupinski, Matthew K.; MacGahan, Christopher J.

Future arms control treaty verification regimes may use radiation imaging measurements to confirm and track nuclear warheads or other treaty accountable items (TAIs). This project leverages advanced inference methods developed for medical and adaptive imaging to improve task performance in arms control applications. Additionally, we seek a method to acquire and analyze imaging data of declared TAIs without creating an image of those objects or otherwise storing or revealing any classified information. Such a method would avoid the use of classified-information barriers (IB).

More Details

Thermal neutron detection using alkali halide scintillators with Li-6 and pulse shape discrimination

Brubaker, Erik B.; Dibble, Dean C.; Mengesha, Wondwosen M.; Yang, Pin Y.

An ideal 3He detector replacement for the near- to medium-term future will use materials that are easy to produce and well understood, while maintaining thermal neutron detection efficiency and gamma rejection close to the 3He standard. Toward this end, we investigated the use of standard alkali halide scintillators interfaced with 6Li and read out with photomultiplier tubes (PMTs). Thermal neutrons are captured on 6Li with high efficiency, emitting high-energy and triton (3H) reaction products. These particles deposit energy in the scintillator, providing a thermal neutron signal; discrimination against gamma interactions is possible via pulse shape discrimination (PSD), since heavy particles produce faster pulses in alkali halide crystals. We constructed and tested two classes of detectors based on this concept. In one case 6Li is used as a dopant in polycrystalline NaI; in the other case a thin Li foil is used as a conversion layer. In the configurations studied here, these systems are sensitive to both gamma and neutron radiation, with discrimination between the two and good energy resolution for gamma spectroscopy. We present results from our investigations, including measurements of the neutron efficiency and gamma rejection for the two detector types. We also show a comparison with Cs2LiYCl6:Ce (CLYC), which is emerging as the standard scintillator for simultaneous gamma and thermal neutron detection, and also allows PSD. We conclude that 6Li foil with CsI scintillating crystals has near-term promise as a thermal neutron detector in applications previously dominated by 3He detectors. The other approach, 6Li-doped alkali halides, has some potential, but require more work to understand material properties and improve fabrication processes.

More Details

Bubble masks for time-encoded imaging of fast neutrons

Brubaker, Erik B.; Brennan, James S.; Marleau, Peter M.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

More Details

A maximum likelihood expectation maximization iterative image reconstruction technique for mask/anti-mask coded aperture data

IEEE Nuclear Science Symposium Conference Record

Brubaker, Erik B.

We present a method to use mask/anti-mask coded aperture data with maximum likelihood expectation maximization (MLEM) image reconstruction. The mask/anti-mask approach eliminates 'unmodulated' data, improving image quality when backgrounds, room scatter, or noisy detectors are significant. MLEM permits complex detector response models, desirable in gamma-ray or fast neutron imaging with thick masks, near-field imaging, or tomographic reconstruction. Subtracted mask/anti-mask data is not Poisson distributed, and cannot be used with MLEM. Instead, we treat unmodulated data as generated by source terms indexed by detector pixel, so that MLEM converges to simultaneous estimates of the true image and the unmodulated event rates. © 2013 IEEE.

More Details

Bubble masks for time-encoded imaging of fast neutrons

IEEE Nuclear Science Symposium Conference Record

Brennan, James S.; Brubaker, Erik B.; Nowack, Aaron; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is induced - typically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in predefined patterns, the oil is contained in tubing structures, and carefully introduced air gaps - bubbles - propagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation for different tube sizes and cross-sectional shapes; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system. © 2013 IEEE.

More Details

Time Encoded Radiation Imaging

Marleau, Peter M.; Brubaker, Erik B.; Gerling, Mark D.; Schuster, Patricia F.; Steele, John T.

Passive detection of special nuclear material (SNM) at long range or under heavy shielding can only be achieved by observing the penetrating neutral particles that it emits: gamma rays and neutrons in the MeV energy range. The ultimate SNM standoff detector system would have sensitivity to both gamma and neutron radiation, a large area and high efficiency to capture as many signal particles as possible, and good discrimination against background particles via directional and energy information. Designing such a system is a daunting task. Using timemodulated collimators could be a transformative technique leading to practical gamma-neutron imaging detector systems that are highly efficient with the potential to exhibit simultaneously high angular and energy resolution. A new technique using time encoding to make a compact, high efficiency imaging detector was conceived. Design considerations using Monte Carlo modeling and the construction and demonstration of a prototype imager are described.

More Details

Fast neutron resonance tomography using double scatter spectroscopy for materials identification

IEEE Nuclear Science Symposium Conference Record

Marleau, Peter M.; Brennan, James S.; Brubaker, Erik B.; Mengesha, Wondwosen M.; Mrowka, Stanley M.

Fast neutron based inspection systems are of interest in many Homeland Security applications because they offer the potential for elemental identification particularly for low Z elements which are the prime constituents of explosives. We are investigating a resonance tomography technique which may address some of the current problems found in fast neutron based inspection systems. A commercial off-the-shelf DT generator is used with an array of detectors to probe materials simultaneously over a large energy range and multiple viewing angles allowing for simultaneous 3-D imaging and materials identification. A prototype system has been constructed and we present here recent results for the identification of materials with differing H, C, N, O compositions. © 2011 IEEE.

More Details

Results from the Coded Aperture Neutron Imaging System (CANIS)

Brennan, James S.; Brubaker, Erik B.; Hilton, Nathan R.; Steele, John T.

Because of their penetrating power, energetic neutrons and gamma rays ({approx}1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging- a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

More Details

Results from the coded aperture neutron imaging system

Brubaker, Erik B.; Steele, John T.; Brennan, James S.

Because of their penetrating power, energetic neutrons and gamma rays ({approx}1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging - a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

More Details

Neutron imaging using the anisotropic response of crystalline organic scintillators

Brubaker, Erik B.; Steele, John T.

An anisotropy in a scintillator's response to neutron elastic scattering interactions can in principle be used to gather directional information about a neutron source using interactions in a single detector. In crystalline organic scintillators, such as anthracene, both the amplitude and the time structure of the scintillation light pulse vary with the direction of the proton recoil with respect to the crystalline axes. Therefore, we have investigated the exploitation of this effect to enable compact, high-efficiency fast neutron detectors that have directional sensitivity via a precise measurement of the pulse shape. We report measurements of the pulse height and shape dependence on proton recoil angle in anthracene, stilbene, p-terphenyl, diphenyl anthracene (DPA), and tetraphenyl butadiene (TPB). Image reconstruction for simulated neutron sources is demonstrated using maximum likelihood methods for optimal directional sensitivity.

More Details

Investigation of the neutron response anisotropy in crystalline organic scintillators

Brubaker, Erik B.; Steele, John T.

An anisotropy in the response of crystalline organic scintillators such as anthracene to neutron elastic scattering interactions has been known for some time. Both the amplitude and the time structure of the scintillation light pulse vary with the direction of the proton recoil with respect to the crystalline axes. In principle, this effect could be exploited to develop compact, high-efficiency fast neutron detectors that have directional sensitivity via a precise measurement of the pulse shape. We are investigating the feasibility and sensitivity of such a detector, particularly for neutrons in the fission energy spectrum. Here we will report new measurements of the pulse shape dependence on proton recoil angle in anthracene and stilbene single crystals, for proton energies in the few MeV range. Digital pulse acquisition and processing are used to allow an exploration of different pulse shape analysis techniques.

More Details
174 Results
174 Results