Cooperative self-assembly for structure and morphology control of energetic materials
The performance of energetic materials (EM) varies significantly across production lots due to the inability of current production methods to yield consistent morphology and size. Lot - to - lot variations and the inability to remake the needed characteristics that meet specification is costly, increases uncertainty, and creates additional risk in programs using these materials. There is thus a pressing need to more reliably formulate EMs with greater control of mor pholog y . The goal of this project is to use the surfactant - assisted self - assembly to generate EM particles with well - defined size and external morphologies using triaminotrinitrobenzene (TATB) and hexanitrohexaazaisowurtzitane (CL - 20) as these EMs are both prevalent in the stockpile and present interesting/urgent reprocessing challenges. W e intend to understand fundamental science on how molecular packing influences EM morphology. We develop scale up fabrication of EM particle s with controlled morphology, p romising to eliminate inconsistent performance by providing a trusted and reproducible method to improve EM s for NW applications.