Publications

19 Results
Skip to search filters

Projection-Based Model Reduction for Coupled Conduction—Enclosure Radiation Systems

Journal of Heat Transfer

Brunini, Victor B.; Parish, Eric J.; Tencer, John T.; Rizzi, Francesco N.

We report a projection-based reduced order model (pROM) methodology has been developed for transient heat transfer problems involving coupled conduction and enclosure radiation. The approach was demonstrated on two test problems of varying complexity. The reduced order models demonstrated substantial speedups (up to 185×) relative to the full order model with good accuracy (less than 3% L error). An attractive feature of pROMs is that there is a natural error indicator for the ROM solution: the final residual norm at each time-step of the converged ROM solution. Using example test cases, we discuss how to interpret this error indicator to assess the accuracy of the ROM solution. The approach shows promise for many-query applications, such as uncertainty quantification and optimization. The reduced computational cost of the ROM relative to the full-order model (FOM) can enable the analysis of larger and more complex systems as well as the exploration of larger parameter spaces.

More Details

Space-Time Reduced-Order Modeling for Uncertainty Quantification

Parish, Eric J.; Jin, Ruhui J.

This work focuses on the space-time reduced-order modeling (ROM) method for solving large-scale uncertainty quantification (UQ) problems with multiple random coefficients. In contrast with the traditional space ROM approach, which performs dimension reduction in the spatial dimension, the space-time ROM approach performs dimension reduction on both the spatial and temporal domains, and thus enables accurate approximate solutions at a low cost. We incorporate the space-time ROM strategy with various classical stochastic UQ propagation methods such as stochastic Galerkin and Monte Carlo. Numerical results demonstrate that our methodology has significant computational advantages compared to state-of-the-art ROM approaches. By testing the approximation errors, we show that there is no obvious loss of simulation accuracy for space-time ROM given its high computational efficiency.

More Details

A compute-bound formulation of Galerkin model reduction for linear time-invariant dynamical systems

Computer Methods in Applied Mechanics and Engineering

Rizzi, Francesco N.; Parish, Eric J.; Blonigan, Patrick J.; Tencer, John T.

This work aims to advance computational methods for projection-based reduced-order models (ROMs) of linear time-invariant (LTI) dynamical systems. For such systems, current practice relies on ROM formulations expressing the state as a rank-1 tensor (i.e., a vector), leading to computational kernels that are memory bandwidth bound and, therefore, ill-suited for scalable performance on modern architectures. This weakness can be particularly limiting when tackling many-query studies, where one needs to run a large number of simulations. This work introduces a reformulation, called rank-2 Galerkin, of the Galerkin ROM for LTI dynamical systems which converts the nature of the ROM problem from memory bandwidth to compute bound. We present the details of the formulation and its implementation, and demonstrate its utility through numerical experiments using, as a test case, the simulation of elastic seismic shear waves in an axisymmetric domain. We quantify and analyze performance and scaling results for varying numbers of threads and problem sizes. Finally, we present an end-to-end demonstration of using the rank-2 Galerkin ROM for a Monte Carlo sampling study. We show that the rank-2 Galerkin ROM is one order of magnitude more efficient than the rank-1 Galerkin ROM (the current practice) and about 970 times more efficient than the full-order model, while maintaining accuracy in both the mean and statistics of the field.

More Details

The Adjoint Petrov–Galerkin method for non-linear model reduction

Computer Methods in Applied Mechanics and Engineering

Parish, Eric J.; Wentland, Christopher R.; Duraisamy, Karthik

We formulate a new projection-based reduced-order modeling technique for non-linear dynamical systems. The proposed technique, which we refer to as the Adjoint Petrov–Galerkin (APG) method, is derived by decomposing the generalized coordinates of a dynamical system into a resolved coarse-scale set and an unresolved fine-scale set. A Markovian finite memory assumption within the Mori–Zwanzig formalism is then used to develop a reduced-order representation of the coarse scales. This procedure leads to a closed reduced-order model that displays commonalities with the adjoint stabilization method used in finite elements. The formulation is shown to be equivalent to a Petrov–Galerkin method with a non-linear, time-varying test basis, thus sharing some similarities with the Least-Squares Petrov–Galerkin method. Theoretical analysis examining a priori error bounds and computational cost is presented. Numerical experiments on the compressible Navier–Stokes equations demonstrate that the proposed method can lead to improvements in numerical accuracy, robustness, and computational efficiency over the Galerkin method on problems of practical interest. Improvements in numerical accuracy and computational efficiency over the Least-Squares Petrov–Galerkin method are observed in most cases.

More Details

Time-series machine-learning error models for approximate solutions to parameterized dynamical systems

Computer Methods in Applied Mechanics and Engineering

Parish, Eric J.; Carlberg, Kevin T.

This work proposes a machine-learning framework for modeling the error incurred by approximate solutions to parameterized dynamical systems. In particular, we extend the machine-learning error models (MLEM) framework proposed in Ref. Freno and Carlberg (2019) to dynamical systems. The proposed Time-Series Machine-Learning Error Modeling (T-MLEM) method constructs a regression model that maps features – which comprise error indicators that are derived from standard a posteriori error-quantification techniques – to a random variable for the approximate-solution error at each time instance. The proposed framework considers a wide range of candidate features, regression methods, and additive noise models. We consider primarily recursive regression techniques developed for time-series modeling, including both classical time-series models (e.g., autoregressive models) and recurrent neural networks (RNNs), but also analyze standard non-recursive regression techniques (e.g., feed-forward neural networks) for comparative purposes. Numerical experiments conducted on multiple benchmark problems illustrate that the long short-term memory (LSTM) neural network, which is a type of RNN, outperforms other methods and yields substantial improvements in error predictions over traditional approaches.

More Details
19 Results
19 Results