Publications

Results 1–25 of 35
Skip to search filters

Non-Contact Mass Density and Thermal Conductivity Measurements of Organic Thin Films Using Frequency–Domain Thermoreflectance

Advanced Materials Interfaces

Perez, Christopher P.; Knepper, Robert; Marquez, Michael P.; Forrest, Eric C.; Tappan, Alexander S.; Asheghi, Mehdi; Goodson, Kenneth E.; Ziade, Elbara O.

Thin-film organic materials are broadly used to study amorphous stabilization of active pharmaceuticals, control explosive detonation phenomena, and introduce insulation in novel thermal barriers. Their synthesis, however, introduces defects and thickness variations that warrant careful characterization of local thermophysical properties such as thermal conductivity and mass density. Here, wide bandwidth (200 Hz to 20 MHz) frequency–domain thermoreflectance (FDTR) is demonstrated to simultaneously extract the thermal conductivity and mass density of 1 μm physical vapor-deposited indomethacin films on Si and SiO2 substrates, as well as 10 and 100 μm films on Si. By assuming a bulk specific heat capacity, mass densities are determined with FDTR measurements of volumetric heat capacity and are in good agreement with the literature, as well as models based upon a dependence on porosity and the kinetic theory for phonons. Lastly, it is found that for broad-band FDTR measurements, insulating substrates provide improved fidelity for the extraction of thermal conductivity and volumetric heat capacity in organic thin films. Overall, this work demonstrates the potential for FDTR as a non-contact method to determine microscale mass density variations across the surface and thickness of organic thin films.

More Details

Engineering the Microstructure and Morphology of Explosive Films via Control of Interfacial Energy

ACS Applied Materials and Interfaces

Forrest, Eric C.; Knepper, Robert; Brumbach, Michael T.; Rodriguez, Mark A.; Archuleta, Kim A.; Marquez, Michael P.; Tappan, Alexander S.

Physical vapor deposition of organic explosives enables growth of polycrystalline films with a unique microstructure and morphology compared to the bulk material. This study demonstrates the ability to control crystal orientation and porosity in pentaerythritol tetranitrate films by varying the interfacial energy between the substrate and the vapor-deposited explosive. Variation in density, porosity, surface roughness, and optical properties is achieved in the explosive film, with significant implications for initiation sensitivity and detonation performance of the explosive material. Various surface science techniques, including angle-resolved X-ray photoelectron spectroscopy and multiliquid contact angle analysis, are utilized to characterize interfacial characteristics between the substrate and explosive film. Optical microscopy and scanning electron microscopy of pentaerythritol tetranitrate surfaces and fracture cross sections illustrate the difference in morphology evolution and the microstructure achieved through surface energy modification. X-ray diffraction studies with the Tilt-A-Whirl three-dimensional pole figure rendering and texture analysis software suite reveal that high surface energy substrates result in a preferred (110) out-of-plane orientation of pentaerythritol tetranitrate crystallites and denser films. Low surface energy substrates create more randomly textured pentaerythritol tetranitrate and lead to nanoscale porosity and lower density films. This work furthers the scientific basis for interfacial engineering of polycrystalline organic explosive films through control of surface energy, enabling future study of dynamic and reactive detonative phenomena at the microscale. Results of this study also have potential applications to active pharmaceutical ingredients, stimuli-responsive polymer films, organic thin film transistors, and other areas.

More Details

Refractive Imaging of Air Shock Above Microscale Defects in Pentaerythritol Tetranitrate (PETN) Films

Propellants, Explosives, Pyrotechnics

Peguero II, Julio C.; Forrest, Eric C.; Knepper, Robert; Hargather, Michael J.; Tappan, Alexander S.; Marquez, Michael P.; Vasiliauskas, Jonathan G.; Rupper, Stephen G.

Physical vapor deposition (PVD) of high explosives can produce energetic samples with unique microstructure and morphology compared to traditional powder processing techniques, but challenges may exist in fabricating explosive films without defects. Deposition conditions and substrate material may promote microcracking and other defects in the explosive films. In this study, we investigate effects of engineered microscale defects (gaps) on detonation propagation and failure for pentaerythritol tetranitrate (PETN) films using ultra-high-speed refractive imaging and hydrocode modelling. Observations of the air shock above the gap reveal significant instabilities during gap crossing and re-ignition.

More Details

Investigating relationship between surface topography and emissivity of metallic additively manufactured parts

International Communications in Heat and Mass Transfer

Taylor, Samantha; Wright, Jeremy B.; Forrest, Eric C.; Jared, Bradley H.; Koepke, Joshua R.; Beaman, Joseph

Due to the direct relationship between thermal history and mechanical behavior, in situ thermal monitoring is key in gauging quality of parts produced with additive manufacturing (AM). Accurate monitoring of temperatures in an AM process requires knowledge of environment and object parameters including object emissivity. The emissivity is dependent on several variables, including: wavelength, material composition, temperature, and surface topography. Researchers have been concerned with the thermal emissivity dependence on temperature since large ranges are seen in metal powder bed processes, but there is also an extensive range of surfaces produced by AM. This work focused on discovering what roughness characteristics control thermal emissivity through investigation of prototypic 316 stainless steel AM samples produced with a range of build conditions on a laser powder bed fusion machine. Through experimental measurements of emissivity using hemispherical directional reflectance (HDR), guided by simulations using a finite-difference time-domain (FDTD) Maxwell solver, it was found that combinations of existing roughness parameters describing both height and slope of the surface correlate well with emissivity changes. These parameters work well due to their apt description of surface features encouraging internal reflection, which is the phenomenon that increases emissivity when a surface falls under the geometric optical region conditions.

More Details

Plastic deformation and material transfer on steel gage blocks during low force mechanical probing

Precision Engineering

Forrest, Eric C.; Mertes, Rick M.; Gray, Jeremy M.; Brumbach, Michael T.; Ramsdale, Samuel J.; Argibay, Nicolas A.; Tran, Hy D.

Contact probing of gaging surfaces is used throughout dimensional metrology. Probe tips such as ruby, sapphire, or diamond are commonly employed as styli for universal length measuring machines (ULMs) and coordinate measuring machines (CMMs) due to the hardness, durability, and wear resistance. Gaging surfaces of gage blocks are precision ground or lapped, with very low surface roughness to enable wringing. Damage or contamination of these surfaces can prevent wringing and lead to measurement error. Experimental investigations using a horizontal ULM and CMM have revealed that even at low force settings (≤0.16 N), probe materials such as ruby and sapphire can cause plastic deformation to hardened carbon chrome steel (such as AISI 52,100) gage block surfaces at the microscale, likely attributed to fretting-associated wear. Under some conditions, permanent transfer of material from the probe stylus to the gaging surface is possible. Results demonstrate irreversible changes and damage to gaging surfaces with repeated probe contact on a ULM and CMM. Optical microscopy, optical profilometry, and scanning electron microscopy (SEM) provide a semi-quantitative assessment of microscale plastic deformation and material transfer. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and Raman techniques confirm chemical constituency of reference materials used (gage blocks and probes) and also identify makeup of deposits on gaging surfaces following probe contact.

More Details

Investigating applicability of surface roughness parameters in describing the metallic AM process

Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019

Taylor, Samantha T.; Jared, Bradley H.; Koepke, Joshua R.; Forrest, Eric C.; Beaman, Joseph

Additive manufacturing (AM) is known for its large variance in mechanical properties. This is not only true for properties like strength, but also surface roughness. Build settings, which affect surface roughness, are often chosen to optimize strength or ductility. As part requirements change, build settings change, thereby changing resultant surface roughness. When describing surfaces, arithmetic roughness (Ra) is the most common parameter. However, it may not provide an adequate representation of surface topography for AM parts. Traditional surface roughness parameters for defining surface topography were well-established before the advent of AM, and a need has arisen to investigate applicability of these parameters to the unusual surfaces created through various AM technologies. This study demonstrates that Ra is not a suitable parameter in correlating surface topography to AM build parameters. Other existing parameters and combination of parameters will be investigated for their suitability in describing the AM process.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, R.A.; Argibay, Nicolas A.; Allen, Kyle M.; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad B.; Brown, Judith A.; Burchard, Ross L.; Chandross, M.; Cook, Adam W.; DiAntonio, Christopher D.; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis R.; Ivanoff, Thomas I.; Jared, Bradley H.; Johnson, Kyle J.; Kammler, Daniel K.; Koepke, Joshua R.; Kustas, Andrew K.; Lavin, Judith M.; Leathe, Nicholas L.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal S.; Martinez, Mario J.; Moser, Daniel M.; Rodgers, Theron R.; Seidl, Daniel T.; Brown-Shaklee, Harlan J.; Stanford, Joshua S.; Stender, Michael S.; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha T.; Trembacki, Bradley T.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details

Posters for AA/CE Reception

Kuether, Robert J.; Allensworth, Brooke M.; Backer, Adam B.; Chen, Elton Y.; Dingreville, Remi P.; Forrest, Eric C.; Knepper, Robert; Tappan, Alexander S.; Marquez, Michael P.; Vasiliauskas, Jonathan G.; Rupper, Stephen G.; Grant, Michael J.; Atencio, Lauren C.; Hipple, Tyler J.; Maes, Danae M.; Timlin, Jerilyn A.; Ma, Tian J.; Garcia, Rudy J.; Danford, Forest L.; Patrizi, Laura P.; Galasso, Jennifer G.; Draelos, Timothy J.; Gunda, Thushara G.; Venezuela, Otoniel V.; Brooks, Wesley A.; Anthony, Stephen M.; Carson, Bryan C.; Reeves, Michael J.; Roach, Matthew R.; Maines, Erin M.; Lavin, Judith M.; Whetten, Shaun R.; Swiler, Laura P.

Abstract not provided.

Effect of microstructure on the detonation behavior of vapor-deposited pentaerythritol tetranitrate (PETN) films

AIP Conference Proceedings

Knepper, Robert; Forrest, Eric C.; Marquez, Michael P.; Tappan, Alexander S.

The microstructure of pentaerythritol tetranitrate (PETN) films fabricated by physical vapor deposition can be altered substantially by changing the surface energy of the substrate on which they are deposited. High substrate surface energies lead to higher density, strongly textured films, while low substrate surface energies lead to lower density, more randomly oriented films. We take advantage of this behavior to create aluminum-confined PETN films with different microstructures depending on whether a vapor-deposited aluminum layer is exposed to atmosphere prior to PETN deposition. Detonation velocities are measured as a function of both PETN and aluminum thickness at near-failure conditions to elucidate the effects of microstructure on detonation behavior. The differences in microstructure produce distinct changes in detonation velocity but do not have a significant effect on failure geometry when confinement thicknesses are above the minimum effectively infinite condition.

More Details

Modeling physical vapor deposition of energetic materials

Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films

Shirvan, Koroush; Forrest, Eric C.

Morphology and microstructure of organic explosive films formed using physical vapor deposition (PVD) processes strongly depends on local surface temperature during deposition. Currently, there is no accurate means of quantifying the local surface temperature during PVD processes in the deposition chambers. This work focuses on using a multiphysics computational fluid dynamics tool, STARCCM+, to simulate pentaerythritol tetranitrate (PETN) deposition. The PETN vapor and solid phase were simulated using the volume of fluid method and its deposition in the vacuum chamber on spinning silicon wafers was modeled. The model also included the spinning copper cooling block where the wafers are placed along with the chiller operating with forced convection refrigerant. Implicit time-dependent simulations in two- and three-dimensional were performed to derive insights in the governing physics for PETN thin film formation. PETN is deposited at the rate of 14 nm/s at 142.9 °C on a wafer with an initial temperature of 22 °C. The deposition of PETN on the wafers was calculated at an assumed heat transfer coefficient (HTC) of 400 W/m2 K. This HTC proved to be the most sensitive parameter in determining the local surface temperature during deposition. Previous experimental work found noticeable microstructural changes with 0.5 mm fused silica wafers in place of silicon during the PETN deposition. This work showed that fused silica slows initial wafer cool down and results in ∼10 °C difference for the surface temperature at 500 μm PETN film thickness. It was also found that the deposition surface temperature is insensitive to the cooling power of the copper block due to the copper block's very large heat capacity and thermal conductivity relative to the heat input from the PVD process. Future work should incorporate the addition of local stress during PETN deposition. Based on simulation results, it is also recommended to investigate the impact of wafer surface energy on the PETN microstructure and morphology formation.

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, R.A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David M.; Cook, Adam W.; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua S.; Boyce, Brad B.; Johnson, Kyle J.; Rodgers, Theron R.; Ford, Kurtis R.; Martinez, Mario J.; Moser, Daniel M.; van Bloemen Waanders, Bart G.; Chandross, M.; Abdeljawad, Fadi F.; Allen, Kyle M.; Stender, Michael S.; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas A.; Brown-Shaklee, Harlan J.; Kustas, Andrew K.; Sugar, Joshua D.; Kammler, Daniel K.; Wilson, Mark A.

Abstract not provided.

Results 1–25 of 35
Results 1–25 of 35