Multigrid-in-time methods for nonlinear optimization of dynamical systems
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computers and Mathematics with Applications
Efficient solution of the Vlasov equation, which can be up to six-dimensional, is key to the simulation of many difficult problems in plasma physics. The discontinuous Petrov-Galerkin (DPG) finite element methodology provides a framework for the development of stable (in the sense of Ladyzhenskaya–Babuška–Brezzi conditions) finite element formulations, with built-in mechanisms for adaptivity. While DPG has been studied extensively in the context of steady-state problems and to a lesser extent with space-time discretizations of transient problems, relatively little attention has been paid to time-marching approaches. In the present work, we study a first application of time-marching DPG to the Vlasov equation, using backward Euler for a Vlasov-Poisson discretization. We demonstrate adaptive mesh refinement for two problems: the two-stream instability problem, and a cold diode problem. We believe the present work is novel both in its application of unstructured adaptive mesh refinement (as opposed to block-structured adaptivity, which has been studied previously) in the context of Vlasov-Poisson, as well as in its application of DPG to the Vlasov-Poisson system. We also discuss extensive additions to the Camellia library in support of both the present formulation as well as extensions to higher dimensions, Maxwell equations, and space-time formulations.
Lecture Notes in Computational Science and Engineering
This paper develops a new domain-decomposition method for solving the KKT system with heat-equation constraints.
2024 IEEE Neuro Inspired Computational Elements Conference, NICE 2024 - Proceedings
Neuromorphic computing platforms hold the promise to dramatically reduce power requirements for calculations that are computationally intensive. One such application space is scientific machine learning (SciML). Techniques in this space use neural networks to approximate solutions of scientific problems. For instance, the popular physics-informed neural network (PINN) approximates the solution to a partial differential equation by using a trained feed-forward neural network, and injecting the knowledge of the physics through the loss function. Recent efforts have demonstrated how to convert a trained PINN to a spiking network architecture. In this work, we discuss our approach to quantization and implementation required to migrate these spiking PINNs to Intel's Loihi 2 neuromorphic hardware. We explore the effect of quantization on the model accuracy, as well as the energy and throughput characteristics of the implementation. It is our intent that this serve as a starting point for additional SciML implementations on neuromorphic hardware.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Computational Physics
Kinetic gas dynamics in rarefied and moderate-density regimes have complex behavior associated with collisional processes. These processes are generally defined by convolution integrals over a high-dimensional space (as in the Boltzmann operator), or require evaluating complex auxiliary variables (as in Rosenbluth potentials in Fokker-Planck operators) that are challenging to implement and computationally expensive to evaluate. In this work, we develop a data-driven neural network model that augments a simple and inexpensive BGK collision operator with a machine-learned correction term, which improves the fidelity of the simple operator with a small overhead to overall runtime. The composite collision operator has a tunable fidelity and, in this work, is trained using and tested against a direct-simulation Monte-Carlo (DSMC) collision operator.
This report documents the progress made in simulating the HERMES-III Magnetically Insulated Transmission Line (MITL) and courtyard with EMPIRE and ITS. This study focuses on the shots that were taken during the months of June and July of 2019 performed with the new MITL extension. There were a few shots where there was dose mapping of the courtyard, 11132, 11133, 11134, 11135, 11136, and 11146. This report focuses on these shots because there was full data return from the MITL electrical diagnostics and the radiation dose sensors in the courtyard. The comparison starts with improving the processing of the incoming voltage into the EMPIRE simulation from the experiment. The currents are then compared at several location along the MITL. The simulation results of the electrons impacting the anode are shown. The electron impact energy and angle is then handed off to ITS which calculates the dose on the faceplate and locations in the courtyard and they are compared to experimental measurements. ITS also calculates the photons and electrons that are injected into the courtyard, these quantities are then used by EMPIRE to calculated the photon and electron transport in the courtyard. The details for the algorithms used to perform the courtyard simulations are presented as well as qualitative comparisons of the electric field, magnetic field, and the conductivity in the courtyard. Because of the computational burden of these calculations the pressure was reduce in the courtyard to reduce the computational load. The computation performance is presented along with suggestion on how to improve both the computational performance as well as the algorithmic performance. Some of the algorithmic changed would reduce the accuracy of the models and detail comparison of these changes are left for a future study. As well as, list of code improvements there is also a list of suggested experimental improvements to improve the quality of the data return.
Plasma physics simulations are vital for a host of Sandia mission concerns, for fundamental science, and for clean energy in the form of fusion power. Sandia's most mature plasma physics simulation capabilities come in the form of particle-in-cell (PIC) models and magnetohydrodynamics (MHD) models. MHD models for a plasma work well in denser plasma regimes when there is enough material that the plasma approximates a fluid. PIC models, on the other hand, work well in lower-density regimes, in which there is not too much to simulate; error in PIC scales as the square root of the number of particles, making high-accuracy simulations expensive. Real-world applications, however, almost always involve a transition region between the high-density regimes where MHD is appropriate, and the low-density regimes for PIC. In such a transition region, a direct discretization of Vlasov is appropriate. Such discretizations come with their own computational costs, however; the phase-space mesh for Vlasov can involve up to six dimensions (seven if time is included), and to apply appropriate homogeneous boundary conditions in velocity space requires meshing a substantial padding region to ensure that the distribution remains sufficiently close to zero at the velocity boundaries. Moreover, for collisional plasmas, the right-hand side of the Vlasov equation is a collision operator, which is non-local in velocity space, and which may dominate the cost of the Vlasov solver. The present LDRD project endeavors to develop modern, foundational tools for the development of continuum-kinetic Vlasov solvers, using the discontinuous Petrov-Galerkin (DPG) methodology, for discretization of Vlasov, and machine-learning (ML) models to enable efficient evaluation of collision operators. DPG affords several key advantages. First, it has a built-in, robust error indicator, allowing us to adapt the mesh in a very natural way, enabling a coarse velocity-space mesh near the homogeneous boundaries, and a fine mesh where the solution has fine features. Second, it is an inherently high-order, high-intensity method, requiring extra local computations to determine so-called optimal test functions, which makes it particularly suited to modern hardware in which floating-point throughput is increasing at a faster rate than memory bandwidth. Finally, DPG is a residual-minimizing method, which enables high-accuracy computation: in typical cases, the method delivers something very close to the $L^2$ projection of the exact solution. Meanwhile, the ML-based collision model we adopt affords a cost structure that scales as the square root of a standard direct evaluation. Moreover, we design our model to conserve mass, momentum, and energy by construction, and our approach to training is highly flexible, in that it can incorporate not only synthetic data from direct-simulation Monte Carlo (DSMC) codes, but also experimental data. We have developed two DPG formulations for Vlasov-Poisson: a time-marching, backward-Euler discretization and a space-time discretization. We have conducted a number of numerical experiments to verify the approach in a 1D1V setting. In this report, we detail these formulations and experiments. We also summarize some new theoretical results developed as part of this project (published as papers previously): some new analysis of DPG for the convection-reaction problem (of which the Vlasov equation is an instance), a new exponential integrator for DPG, and some numerical exploration of various DPG-based time-marching approaches to the heat equation. As part of this work, we have contributed extensively to the Camellia open-source library; we also describe the new capabilities and their usage. We have also developed a well-documented methodology for single-species collision operators, which we applied to argon and demonstrated with numerical experiments. We summarize those results here, as well as describing at a high level a design extending the methodology to multi-species operators. We have released a new open-source library, MLC, under a BSD license; we include a summary of its capabilities as well.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
An approach to numerically modeling relativistic magnetrons, in which the electrons are represented with a relativistic fluid, is described. A principal effect in the operation of a magnetron is space-charge-limited (SCL) emission of electrons from the cathode. We have developed an approximate SCL emission boundary condition for the fluid electron model. This boundary condition prescribes the flux of electrons as a function of the normal component of the electric field on the boundary. We show the results of a benchmarking activity that applies the fluid SCL boundary condition to the one-dimensional Child-Langmuir diode problem and a canonical two-dimensional diode problem. Simulation results for a two-dimensional A6 magnetron are then presented. Computed bunching of the electron cloud occurs and coincides with significant microwave power generation. Numerical convergence of the solution is considered. Sharp gradients in the solution quantities at the diocotron resonance, spanning an interval of three to four grid cells in the most well-resolved case, are present and likely affect convergence.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This work, building on previous efforts, develops a suite of new graph neural network machine learning architectures that generate data-driven prolongators for use in Algebraic Multigrid (AMG). Algebraic Multigrid is a powerful and common technique for solving large, sparse linear systems. Its effectiveness is problem dependent and heavily depends on the choice of the prolongation operator, which interpolates the coarse mesh results onto a finer mesh. Previous work has used recent developments in graph neural networks to learn a prolongation operator from a given coefficient matrix. In this paper, we expand on previous work by exploring architectural enhancements of graph neural networks. A new method for generating a training set is developed which more closely aligns to the test set. Asymptotic error reduction factors are compared on a test suite of 3-dimensional Poisson problems with varying degrees of element stretching. Results show modest improvements in asymptotic error factor over both commonly chosen baselines and learning methods from previous work.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Communications in Computational Physics
In this paper we introduce EMPIRE-PIC, a finite element method particle-in-cell (FEM-PIC) application developed at Sandia National Laboratories. The code has been developed in C++ using the Trilinos library and the Kokkos Performance Portability Framework to enable running on multiple modern compute architectures while only requiring maintenance of a single codebase. EMPIRE-PIC is capable of solving both electrostatic and electromagnetic problems in two- and three-dimensions to second-order accuracy in space and time. In this paper we validate the code against three benchmark problems - a simple electron orbit, an electrostatic Langmuir wave, and a transverse electromagnetic wave propagating through a plasma. We demonstrate the performance of EMPIRE-PIC on four different architectures: Intel Haswell CPUs, Intel's Xeon Phi Knights Landing, ARM Thunder-X2 CPUs, and NVIDIA Tesla V100 GPUs attached to IBM POWER9 processors. This analysis demonstrates scalability of the code up to more than two thousand GPUs, and greater than one hundred thousand CPUs.
CEUR Workshop Proceedings
Second-order optimizers hold intriguing potential for deep learning, but suffer from increased cost and sensitivity to the non-convexity of the loss surface as compared to gradient-based approaches. We introduce a coordinate descent method to train deep neural networks for classification tasks that exploits global convexity of the cross-entropy loss in the weights of the linear layer. Our hybrid Newton/Gradient Descent (NGD) method is consistent with the interpretation of hidden layers as providing an adaptive basis and the linear layer as providing an optimal fit of the basis to data. By alternating between a second-order method to find globally optimal parameters for the linear layer and gradient descent to train the hidden layers, we ensure an optimal fit of the adaptive basis to data throughout training. The size of the Hessian in the second-order step scales only with the number weights in the linear layer and not the depth and width of the hidden layers; furthermore, the approach is applicable to arbitrary hidden layer architecture. Previous work applying this adaptive basis perspective to regression problems demonstrated significant improvements in accuracy at reduced training cost, and this work can be viewed as an extension of this approach to classification problems. We first prove that the resulting Hessian matrix is symmetric semi-definite, and that the Newton step realizes a global minimizer. By studying classification of manufactured two-dimensional point cloud data, we demonstrate both an improvement in validation error and a striking qualitative difference in the basis functions encoded in the hidden layer when trained using NGD. Application to image classification benchmarks for both dense and convolutional architectures reveals improved training accuracy, suggesting gains of second-order methods over gradient descent. A Tensorflow implementation of the algorithm is available at github.com/rgp62/.
This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.
Abstract not provided.
Computer Methods in Applied Mechanics and Engineering
The application of deep learning toward discovery of data-driven models requires careful application of inductive biases to obtain a description of physics which is both accurate and robust. We present here a framework for discovering continuum models from high fidelity molecular simulation data. Our approach applies a neural network parameterization of governing physics in modal space, allowing a characterization of differential operators while providing structure which may be used to impose biases related to symmetry, isotropy, and conservation form. Here, we demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows. For the flow physics we demonstrate this approach leads to a learned operator that generalizes to system characteristics not included in the training sets, such as variable particle sizes, densities, and concentration.
Abstract not provided.
Abstract not provided.
Journal of Fusion Energy
Machine learning and artificial intelligence (ML/AI) methods have been used successfully in recent years to solve problems in many areas, including image recognition, unsupervised and supervised classification, game-playing, system identification and prediction, and autonomous vehicle control. Data-driven machine learning methods have also been applied to fusion energy research for over 2 decades, including significant advances in the areas of disruption prediction, surrogate model generation, and experimental planning. The advent of powerful and dedicated computers specialized for large-scale parallel computation, as well as advances in statistical inference algorithms, have greatly enhanced the capabilities of these computational approaches to extract scientific knowledge and bridge gaps between theoretical models and practical implementations. Large-scale commercial success of various ML/AI applications in recent years, including robotics, industrial processes, online image recognition, financial system prediction, and autonomous vehicles, have further demonstrated the potential for data-driven methods to produce dramatic transformations in many fields. These advances, along with the urgency of need to bridge key gaps in knowledge for design and operation of reactors such as ITER, have driven planned expansion of efforts in ML/AI within the US government and around the world. The Department of Energy (DOE) Office of Science programs in Fusion Energy Sciences (FES) and Advanced Scientific Computing Research (ASCR) have organized several activities to identify best strategies and approaches for applying ML/AI methods to fusion energy research. This paper describes the results of a joint FES/ASCR DOE-sponsored Research Needs Workshop on Advancing Fusion with Machine Learning, held April 30–May 2, 2019, in Gaithersburg, MD (full report available at https://science.osti.gov/-/media/fes/pdf/workshop-reports/FES_ASCR_Machine_Learning_Report.pdf). The workshop drew on broad representation from both FES and ASCR scientific communities, and identified seven Priority Research Opportunities (PRO’s) with high potential for advancing fusion energy. In addition to the PRO topics themselves, the workshop identified research guidelines to maximize the effectiveness of ML/AI methods in fusion energy science, which include focusing on uncertainty quantification, methods for quantifying regions of validity of models and algorithms, and applying highly integrated teams of ML/AI mathematicians, computer scientists, and fusion energy scientists with domain expertise in the relevant areas.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.